Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209631732> ?p ?o ?g. }
- W3209631732 endingPage "8207" @default.
- W3209631732 startingPage "8194" @default.
- W3209631732 abstract "The design and operation of modern energy systems are heavily influenced by time-dependent and uncertain parameters, e.g., renewable electricity generation, load-demand, and electricity prices. These are typically represented by a set of discrete realizations known as scenarios. A popular scenario generation approach uses deep generative models (DGM) that allow scenario generation without prior assumptions about the data distribution. However, the validation of generated scenarios is difficult, and a comprehensive discussion about appropriate validation methods is currently lacking. To start this discussion, we provide a critical assessment of the currently used validation methods in the energy scenario generation literature. In particular, we assess validation methods based on probability density, auto-correlation, and power spectral density. Furthermore, we propose using the multifractal detrended fluctuation analysis (MFDFA) as an additional validation method for non-trivial features like peaks, bursts, and plateaus. As representative examples, we train generative adversarial networks (GANs), Wasserstein GANs (WGANs), and variational autoencoders (VAEs) on two renewable power generation time series (photovoltaic and wind from Germany in 2013 to 2015) and an intra-day electricity price time series form the European Energy Exchange in 2017 to 2019. We apply the four validation methods to both the historical and the generated data and discuss the interpretation of validation results as well as common mistakes, pitfalls, and limitations of the validation methods. Our assessment shows that no single method sufficiently characterizes a scenario but ideally validation should include multiple methods and be interpreted carefully in the context of scenarios over short time periods." @default.
- W3209631732 created "2021-11-08" @default.
- W3209631732 creator A5025650516 @default.
- W3209631732 creator A5040295886 @default.
- W3209631732 creator A5045091643 @default.
- W3209631732 creator A5060026142 @default.
- W3209631732 creator A5074964842 @default.
- W3209631732 creator A5082560876 @default.
- W3209631732 date "2022-01-01" @default.
- W3209631732 modified "2023-10-10" @default.
- W3209631732 title "Validation Methods for Energy Time Series Scenarios From Deep Generative Models" @default.
- W3209631732 cites W1570220941 @default.
- W3209631732 cites W1991595392 @default.
- W3209631732 cites W2000769971 @default.
- W3209631732 cites W2011301426 @default.
- W3209631732 cites W2032456190 @default.
- W3209631732 cites W2069502471 @default.
- W3209631732 cites W2071602085 @default.
- W3209631732 cites W2089062302 @default.
- W3209631732 cites W2089217930 @default.
- W3209631732 cites W2103484453 @default.
- W3209631732 cites W2106822551 @default.
- W3209631732 cites W2114196548 @default.
- W3209631732 cites W2118020555 @default.
- W3209631732 cites W2286752160 @default.
- W3209631732 cites W2410209997 @default.
- W3209631732 cites W2739824434 @default.
- W3209631732 cites W2740700484 @default.
- W3209631732 cites W2752218460 @default.
- W3209631732 cites W2771024276 @default.
- W3209631732 cites W2783377902 @default.
- W3209631732 cites W2789841081 @default.
- W3209631732 cites W2895767075 @default.
- W3209631732 cites W2896194880 @default.
- W3209631732 cites W2904510742 @default.
- W3209631732 cites W2920255076 @default.
- W3209631732 cites W2940699800 @default.
- W3209631732 cites W2944588927 @default.
- W3209631732 cites W2954642049 @default.
- W3209631732 cites W2963185411 @default.
- W3209631732 cites W2963936896 @default.
- W3209631732 cites W2964076568 @default.
- W3209631732 cites W2967350632 @default.
- W3209631732 cites W2973113771 @default.
- W3209631732 cites W3009854800 @default.
- W3209631732 cites W3018894402 @default.
- W3209631732 cites W3034797134 @default.
- W3209631732 cites W3037508934 @default.
- W3209631732 cites W3150635270 @default.
- W3209631732 cites W3204937802 @default.
- W3209631732 cites W953560957 @default.
- W3209631732 doi "https://doi.org/10.1109/access.2022.3141875" @default.
- W3209631732 hasPublicationYear "2022" @default.
- W3209631732 type Work @default.
- W3209631732 sameAs 3209631732 @default.
- W3209631732 citedByCount "4" @default.
- W3209631732 countsByYear W32096317322022 @default.
- W3209631732 countsByYear W32096317322023 @default.
- W3209631732 crossrefType "journal-article" @default.
- W3209631732 hasAuthorship W3209631732A5025650516 @default.
- W3209631732 hasAuthorship W3209631732A5040295886 @default.
- W3209631732 hasAuthorship W3209631732A5045091643 @default.
- W3209631732 hasAuthorship W3209631732A5060026142 @default.
- W3209631732 hasAuthorship W3209631732A5074964842 @default.
- W3209631732 hasAuthorship W3209631732A5082560876 @default.
- W3209631732 hasBestOaLocation W32096317321 @default.
- W3209631732 hasConcept C119599485 @default.
- W3209631732 hasConcept C119857082 @default.
- W3209631732 hasConcept C121332964 @default.
- W3209631732 hasConcept C124101348 @default.
- W3209631732 hasConcept C127413603 @default.
- W3209631732 hasConcept C13280743 @default.
- W3209631732 hasConcept C151406439 @default.
- W3209631732 hasConcept C151730666 @default.
- W3209631732 hasConcept C154945302 @default.
- W3209631732 hasConcept C163258240 @default.
- W3209631732 hasConcept C185798385 @default.
- W3209631732 hasConcept C188573790 @default.
- W3209631732 hasConcept C205649164 @default.
- W3209631732 hasConcept C2779343474 @default.
- W3209631732 hasConcept C41008148 @default.
- W3209631732 hasConcept C423512 @default.
- W3209631732 hasConcept C62520636 @default.
- W3209631732 hasConcept C78600449 @default.
- W3209631732 hasConcept C86803240 @default.
- W3209631732 hasConceptScore W3209631732C119599485 @default.
- W3209631732 hasConceptScore W3209631732C119857082 @default.
- W3209631732 hasConceptScore W3209631732C121332964 @default.
- W3209631732 hasConceptScore W3209631732C124101348 @default.
- W3209631732 hasConceptScore W3209631732C127413603 @default.
- W3209631732 hasConceptScore W3209631732C13280743 @default.
- W3209631732 hasConceptScore W3209631732C151406439 @default.
- W3209631732 hasConceptScore W3209631732C151730666 @default.
- W3209631732 hasConceptScore W3209631732C154945302 @default.
- W3209631732 hasConceptScore W3209631732C163258240 @default.
- W3209631732 hasConceptScore W3209631732C185798385 @default.
- W3209631732 hasConceptScore W3209631732C188573790 @default.
- W3209631732 hasConceptScore W3209631732C205649164 @default.