Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209651137> ?p ?o ?g. }
- W3209651137 endingPage "108487" @default.
- W3209651137 startingPage "108487" @default.
- W3209651137 abstract "Deep Transfer Learning (DTL) is a new paradigm of machine learning, which can not only leverage the advantages of Deep Learning (DL) in feature representation, but also benefit from the superiority of Transfer Learning (TL) in knowledge transfer. As a result, DTL techniques can make DL-based fault diagnosis methods more reliable, robust and applicable, and they have been widely developed and investigated in the field of Intelligent Fault Diagnosis (IFD). Although several systematic and valuable review articles have been published on the topic of IFD, they summarized relevant research only from an algorithm perspective and overlooked practical applications in industry scenarios. Furthermore, a comprehensive review on DTL-based IFD methods is still lacking. From this insight, it is particularly important and more necessary to comprehensively survey the relevant publications of DTL-based IFD, which will help readers to conveniently understand the current state-of-the-art techniques and to quickly design an effective solution for solving IFD problems in practice. First, theoretical backgrounds of DTL are briefly introduced to present how the transfer learning techniques can be integrated with deep learning models. Then, major applications of DTL and their recent developments in the field of IFD are detailed and discussed. More importantly, suggestions on how to select DTL algorithms in practical applications, and some future challenges are shared. Finally, conclusions of this survey are given. At last, we have reason to believe that the works done in this article can provide convenience and inspiration for the researchers who want to devote their efforts in the progress and advance of IFD." @default.
- W3209651137 created "2021-11-08" @default.
- W3209651137 creator A5003913508 @default.
- W3209651137 creator A5011148961 @default.
- W3209651137 creator A5036048287 @default.
- W3209651137 creator A5037156903 @default.
- W3209651137 creator A5052022256 @default.
- W3209651137 creator A5063044163 @default.
- W3209651137 creator A5064722162 @default.
- W3209651137 creator A5082065343 @default.
- W3209651137 date "2022-03-01" @default.
- W3209651137 modified "2023-10-18" @default.
- W3209651137 title "A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges" @default.
- W3209651137 cites W114517082 @default.
- W3209651137 cites W2033800551 @default.
- W3209651137 cites W2060304859 @default.
- W3209651137 cites W2062291443 @default.
- W3209651137 cites W2122838776 @default.
- W3209651137 cites W2165698076 @default.
- W3209651137 cites W2556013418 @default.
- W3209651137 cites W2731372149 @default.
- W3209651137 cites W2744604411 @default.
- W3209651137 cites W2763583057 @default.
- W3209651137 cites W2773549135 @default.
- W3209651137 cites W2779610669 @default.
- W3209651137 cites W2787225861 @default.
- W3209651137 cites W2791694051 @default.
- W3209651137 cites W2793062918 @default.
- W3209651137 cites W2798149494 @default.
- W3209651137 cites W2798593490 @default.
- W3209651137 cites W2802130013 @default.
- W3209651137 cites W2803884688 @default.
- W3209651137 cites W2809946251 @default.
- W3209651137 cites W2810292802 @default.
- W3209651137 cites W2887782657 @default.
- W3209651137 cites W2891319189 @default.
- W3209651137 cites W2897250207 @default.
- W3209651137 cites W2898375427 @default.
- W3209651137 cites W2898760173 @default.
- W3209651137 cites W2899279252 @default.
- W3209651137 cites W2900529838 @default.
- W3209651137 cites W2900935771 @default.
- W3209651137 cites W2901639182 @default.
- W3209651137 cites W2903917280 @default.
- W3209651137 cites W2904138018 @default.
- W3209651137 cites W2904218127 @default.
- W3209651137 cites W2904648439 @default.
- W3209651137 cites W2905166565 @default.
- W3209651137 cites W2906569178 @default.
- W3209651137 cites W2907541186 @default.
- W3209651137 cites W2908261578 @default.
- W3209651137 cites W2908441554 @default.
- W3209651137 cites W2910881901 @default.
- W3209651137 cites W2912073957 @default.
- W3209651137 cites W2912581782 @default.
- W3209651137 cites W2913114301 @default.
- W3209651137 cites W2914951395 @default.
- W3209651137 cites W2916064970 @default.
- W3209651137 cites W2919115771 @default.
- W3209651137 cites W2924922918 @default.
- W3209651137 cites W2927744156 @default.
- W3209651137 cites W2927893014 @default.
- W3209651137 cites W2931035581 @default.
- W3209651137 cites W2934649617 @default.
- W3209651137 cites W2940658606 @default.
- W3209651137 cites W2945834994 @default.
- W3209651137 cites W2946048316 @default.
- W3209651137 cites W2947160970 @default.
- W3209651137 cites W2948092478 @default.
- W3209651137 cites W2948689530 @default.
- W3209651137 cites W2953680418 @default.
- W3209651137 cites W2954154461 @default.
- W3209651137 cites W2957568672 @default.
- W3209651137 cites W2963178695 @default.
- W3209651137 cites W2964109570 @default.
- W3209651137 cites W2964288524 @default.
- W3209651137 cites W2964937757 @default.
- W3209651137 cites W2967625104 @default.
- W3209651137 cites W2968409655 @default.
- W3209651137 cites W2969372261 @default.
- W3209651137 cites W2969690716 @default.
- W3209651137 cites W2969736276 @default.
- W3209651137 cites W2969902687 @default.
- W3209651137 cites W2970736947 @default.
- W3209651137 cites W2972173447 @default.
- W3209651137 cites W2972902574 @default.
- W3209651137 cites W2974362092 @default.
- W3209651137 cites W2978144367 @default.
- W3209651137 cites W2981982720 @default.
- W3209651137 cites W2984201918 @default.
- W3209651137 cites W2987170822 @default.
- W3209651137 cites W2989988069 @default.
- W3209651137 cites W2990226288 @default.
- W3209651137 cites W2990403609 @default.
- W3209651137 cites W2990705538 @default.
- W3209651137 cites W2990851485 @default.
- W3209651137 cites W2991521245 @default.
- W3209651137 cites W2991661665 @default.