Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209651949> ?p ?o ?g. }
- W3209651949 endingPage "4177" @default.
- W3209651949 startingPage "4166" @default.
- W3209651949 abstract "ConspectusThe last decades have witnessed unprecedented scientific breakthroughs in all the fields of knowledge, from basic sciences to translational research, resulting in the drastic improvement of the lifespan and overall quality of life. However, despite these great advances, the treatment and diagnosis of some diseases remain a challenge. Inspired by nature, scientists have been exploring biomolecules and their derivatives as novel therapeutic/diagnostic agents. Among biomolecules, proteins raise much interest due to their high versatility, biocompatibility, and biodegradability.Protein binders (binders) are proteins that bind other proteins, in certain cases, inhibiting or modulating their action. Given their therapeutic potential, binders are emerging as the next generation of biopharmaceuticals. The most well-known example of binders are antibodies, and inspired by them researchers have developed alternative binders using protein design approaches. Protein design can be based on naturally occurring proteins in which, by means of rational design or combinatorial approaches, new binding interfaces can be engineered to obtain specific functions or based on de novo proteins emerging from state-of-the-art computational methodologies.Among the novel designed proteins, a class of engineered repeat proteins, the consensus tetratricopeptide repeat (CTPR) proteins, stand out due to their stability and robustness. The CTPR unit is a helix-turn-helix motif constituted of 34 amino acids, of which only 8 are essential to ensure correct folding of the structure. The small number of conserved residues of CTPR proteins leaves plenty of freedom for functional mutations, making them a base scaffold that can be easily and reproducibly tailored to endow desired functions to the protein. For example, the introduction of metal-binding residues (e.g., histidines, cysteines) drives the coordination of metal ions and the subsequent formation of nanomaterials. Additionally, the CTPR unit can be conjugated with other peptides/proteins or repeated in tandem to encode larger CTPR proteins with superhelical structures. These properties allow for the design of both binder and nanomaterial-coordination modules as well as their combination within the same molecule, making the CTPR proteins, as we have demonstrated in several recent examples, the ideal platform to develop protein-nanomaterial hybrids. Generally, the fusion of two distinct materials exploits the best properties of each; however, in protein-nanomaterial hybrids, the fusion takes on a new dimension as new properties arise.These hybrids have ushered the use of protein-based nanomaterials as biopharmaceuticals beyond their original therapeutic scope and paved the way for their use as theranostic agents. Despite several reports of protein-stabilized nanomaterials found in the literature, these systems offer limited control in the synthesis and properties of the grown nanomaterials, as the protein acts just as a stabilizing agent with no significant functional contribution. Therefore, the rational design of protein-based nanomaterials as true theranostic agents is still incipient. In this context, CTPR proteins have emerged as promising scaffolds to hold simultaneously therapeutic and diagnostic functions through protein engineering, as it has been recently demonstrated in pioneering in vitro and in vivo examples." @default.
- W3209651949 created "2021-11-08" @default.
- W3209651949 creator A5016034707 @default.
- W3209651949 creator A5022349714 @default.
- W3209651949 creator A5024730739 @default.
- W3209651949 creator A5058317095 @default.
- W3209651949 creator A5064919414 @default.
- W3209651949 creator A5074889888 @default.
- W3209651949 creator A5075185586 @default.
- W3209651949 date "2021-11-03" @default.
- W3209651949 modified "2023-10-15" @default.
- W3209651949 title "Engineered Repeat Protein Hybrids: The New Horizon for Biologic Medicines and Diagnostic Tools" @default.
- W3209651949 cites W1512401201 @default.
- W3209651949 cites W1954202239 @default.
- W3209651949 cites W1967514651 @default.
- W3209651949 cites W1979319736 @default.
- W3209651949 cites W1985189873 @default.
- W3209651949 cites W1992612475 @default.
- W3209651949 cites W2008698790 @default.
- W3209651949 cites W2010669711 @default.
- W3209651949 cites W2024296243 @default.
- W3209651949 cites W2040299410 @default.
- W3209651949 cites W2042237519 @default.
- W3209651949 cites W2042412060 @default.
- W3209651949 cites W2043621883 @default.
- W3209651949 cites W2044376654 @default.
- W3209651949 cites W2056090494 @default.
- W3209651949 cites W2056924642 @default.
- W3209651949 cites W2057520802 @default.
- W3209651949 cites W2057706355 @default.
- W3209651949 cites W2079160563 @default.
- W3209651949 cites W2101670915 @default.
- W3209651949 cites W2110882545 @default.
- W3209651949 cites W2113564299 @default.
- W3209651949 cites W2115746274 @default.
- W3209651949 cites W2130678936 @default.
- W3209651949 cites W2146085716 @default.
- W3209651949 cites W2152044968 @default.
- W3209651949 cites W2152599849 @default.
- W3209651949 cites W2159243945 @default.
- W3209651949 cites W2164836215 @default.
- W3209651949 cites W2165238581 @default.
- W3209651949 cites W2199134476 @default.
- W3209651949 cites W2219495412 @default.
- W3209651949 cites W2271971955 @default.
- W3209651949 cites W2288807953 @default.
- W3209651949 cites W2328144793 @default.
- W3209651949 cites W2465850833 @default.
- W3209651949 cites W2519539312 @default.
- W3209651949 cites W2566982980 @default.
- W3209651949 cites W2595177546 @default.
- W3209651949 cites W2735633909 @default.
- W3209651949 cites W2742837939 @default.
- W3209651949 cites W2757442068 @default.
- W3209651949 cites W2765596051 @default.
- W3209651949 cites W2807125210 @default.
- W3209651949 cites W2889573754 @default.
- W3209651949 cites W2900884351 @default.
- W3209651949 cites W2920158983 @default.
- W3209651949 cites W2921288859 @default.
- W3209651949 cites W2943443652 @default.
- W3209651949 cites W2955764310 @default.
- W3209651949 cites W2970179497 @default.
- W3209651949 cites W3003867301 @default.
- W3209651949 cites W3011698798 @default.
- W3209651949 cites W3024848554 @default.
- W3209651949 cites W3033698546 @default.
- W3209651949 cites W3040882542 @default.
- W3209651949 cites W3048164414 @default.
- W3209651949 cites W3048515223 @default.
- W3209651949 cites W3048998868 @default.
- W3209651949 cites W3073319434 @default.
- W3209651949 cites W3092622934 @default.
- W3209651949 cites W3111733561 @default.
- W3209651949 cites W3112385757 @default.
- W3209651949 cites W3112816916 @default.
- W3209651949 cites W3113161443 @default.
- W3209651949 cites W3120617366 @default.
- W3209651949 cites W3128058096 @default.
- W3209651949 cites W3159844184 @default.
- W3209651949 cites W3205725073 @default.
- W3209651949 doi "https://doi.org/10.1021/acs.accounts.1c00440" @default.
- W3209651949 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8600599" @default.
- W3209651949 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34730945" @default.
- W3209651949 hasPublicationYear "2021" @default.
- W3209651949 type Work @default.
- W3209651949 sameAs 3209651949 @default.
- W3209651949 citedByCount "6" @default.
- W3209651949 countsByYear W32096519492022 @default.
- W3209651949 countsByYear W32096519492023 @default.
- W3209651949 crossrefType "journal-article" @default.
- W3209651949 hasAuthorship W3209651949A5016034707 @default.
- W3209651949 hasAuthorship W3209651949A5022349714 @default.
- W3209651949 hasAuthorship W3209651949A5024730739 @default.
- W3209651949 hasAuthorship W3209651949A5058317095 @default.
- W3209651949 hasAuthorship W3209651949A5064919414 @default.
- W3209651949 hasAuthorship W3209651949A5074889888 @default.
- W3209651949 hasAuthorship W3209651949A5075185586 @default.