Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209658051> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W3209658051 abstract "Abstract We show that the Gelfand character <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:msub> <m:mi>χ</m:mi> <m:mi>G</m:mi> </m:msub> </m:math> chi_{G} of a finite group 𝐺 (i.e. the sum of all irreducible complex characters of 𝐺) may be realized as a “twisted trace” <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:mi>g</m:mi> <m:mo>↦</m:mo> <m:mrow> <m:mi>Tr</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mrow> <m:msub> <m:mi>ρ</m:mi> <m:mi>g</m:mi> </m:msub> <m:mo>∘</m:mo> <m:mi>T</m:mi> </m:mrow> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> gmapstooperatorname{Tr}(rho_{g}circ T) for a suitable involutive linear automorphism 𝑇 of <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:mrow> </m:math> L^{2}(G) , where <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mi>ρ</m:mi> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:math> (L^{2}(G),rho) is the right regular representation of 𝐺. Moreover, we prove that, under certain hypotheses, we have <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:mrow> <m:mi>T</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mi>f</m:mi> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo>∘</m:mo> <m:mi>L</m:mi> </m:mrow> </m:mrow> </m:math> T(f)=fcirc L ( <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:mi>f</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> fin L^{2}(G) ), where 𝐿 is an involutive anti-automorphism of 𝐺. The natural representation 𝜏 of 𝐺 associated to the natural 𝐿-conjugacy action of 𝐺 in the fixed point set <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:msub> <m:mi>Fix</m:mi> <m:mi>G</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mi>L</m:mi> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:mrow> </m:math> operatorname{Fix}_{G}(L) of 𝐿 turns out to be a Gelfand model for 𝐺 in some cases. We show that <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mrow> <m:msub> <m:mi>Fix</m:mi> <m:mi>G</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mi>L</m:mi> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mi>τ</m:mi> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:math> (L^{2}(operatorname{Fix}_{G}(L)),tau) fails to be a Gelfand model if 𝐺 admits non-trivial central involutions." @default.
- W3209658051 created "2021-11-08" @default.
- W3209658051 creator A5008913081 @default.
- W3209658051 creator A5053480905 @default.
- W3209658051 date "2021-10-28" @default.
- W3209658051 modified "2023-10-16" @default.
- W3209658051 title "On the realization of the Gelfand character of a finite group as a twisted trace" @default.
- W3209658051 cites W1965765000 @default.
- W3209658051 cites W1989168102 @default.
- W3209658051 cites W2000870312 @default.
- W3209658051 cites W2032563015 @default.
- W3209658051 cites W2091090127 @default.
- W3209658051 cites W2101409671 @default.
- W3209658051 cites W2900909468 @default.
- W3209658051 cites W41680052 @default.
- W3209658051 cites W4251516929 @default.
- W3209658051 cites W4298425892 @default.
- W3209658051 cites W2089182084 @default.
- W3209658051 doi "https://doi.org/10.1515/jgth-2020-0207" @default.
- W3209658051 hasPublicationYear "2021" @default.
- W3209658051 type Work @default.
- W3209658051 sameAs 3209658051 @default.
- W3209658051 citedByCount "0" @default.
- W3209658051 crossrefType "journal-article" @default.
- W3209658051 hasAuthorship W3209658051A5008913081 @default.
- W3209658051 hasAuthorship W3209658051A5053480905 @default.
- W3209658051 hasBestOaLocation W32096580511 @default.
- W3209658051 hasConcept C105795698 @default.
- W3209658051 hasConcept C114614502 @default.
- W3209658051 hasConcept C121332964 @default.
- W3209658051 hasConcept C2781089630 @default.
- W3209658051 hasConcept C33923547 @default.
- W3209658051 hasConceptScore W3209658051C105795698 @default.
- W3209658051 hasConceptScore W3209658051C114614502 @default.
- W3209658051 hasConceptScore W3209658051C121332964 @default.
- W3209658051 hasConceptScore W3209658051C2781089630 @default.
- W3209658051 hasConceptScore W3209658051C33923547 @default.
- W3209658051 hasIssue "0" @default.
- W3209658051 hasLocation W32096580511 @default.
- W3209658051 hasLocation W32096580512 @default.
- W3209658051 hasOpenAccess W3209658051 @default.
- W3209658051 hasPrimaryLocation W32096580511 @default.
- W3209658051 hasRelatedWork W1978042415 @default.
- W3209658051 hasRelatedWork W1979843330 @default.
- W3209658051 hasRelatedWork W2041299657 @default.
- W3209658051 hasRelatedWork W2260035625 @default.
- W3209658051 hasRelatedWork W2612567111 @default.
- W3209658051 hasRelatedWork W2935759653 @default.
- W3209658051 hasRelatedWork W2964072617 @default.
- W3209658051 hasRelatedWork W2976797620 @default.
- W3209658051 hasRelatedWork W3105167352 @default.
- W3209658051 hasRelatedWork W3210717968 @default.
- W3209658051 hasVolume "0" @default.
- W3209658051 isParatext "false" @default.
- W3209658051 isRetracted "false" @default.
- W3209658051 magId "3209658051" @default.
- W3209658051 workType "article" @default.