Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209683451> ?p ?o ?g. }
- W3209683451 endingPage "3291" @default.
- W3209683451 startingPage "3282" @default.
- W3209683451 abstract "Although monitor devices and information systems are increasingly connected across hospitals, but scenarios such as hospital acquired infections (HAIs) detection where data are extremely scare and imbalanced has remained to be solved. In this paper, an architecture with generative adversarial networks (GANs) coupled with dual active learning (AL) modules was proposed to mitigate the burden of sampling and learning an inaccurate model caused by imbalanced HAIs datasets. Results showed that generating minority class by GANs could ease the problem of imbalanced data and dual AL modules could make the process of training GANs and sampling generated data more efficient and effective. Experiments on two real-world clinical HAIs datasets confirmed the effectiveness of the proposed framework. GAN balanced dataset improved accuray and f1-score by 7.75% and 12.67% compared to imbalanced dataset. The area of active selection accuracy curve above random selection accuracy curve accumulated to 1.13 and 0.52 from 0 to 50 iterations on two datasets. This approach can be applied in regional healthcare environment as a useful method for handling data scarcity and imbalance." @default.
- W3209683451 created "2021-11-08" @default.
- W3209683451 creator A5007408091 @default.
- W3209683451 creator A5012278873 @default.
- W3209683451 creator A5046000818 @default.
- W3209683451 creator A5047093288 @default.
- W3209683451 creator A5047767249 @default.
- W3209683451 creator A5051212920 @default.
- W3209683451 creator A5052284130 @default.
- W3209683451 creator A5079301418 @default.
- W3209683451 date "2022-09-01" @default.
- W3209683451 modified "2023-10-16" @default.
- W3209683451 title "GAN-Based Dual Active Learning for Nosocomial Infection Detection" @default.
- W3209683451 cites W1988256277 @default.
- W3209683451 cites W1995875735 @default.
- W3209683451 cites W2087240369 @default.
- W3209683451 cites W2087787741 @default.
- W3209683451 cites W2096945460 @default.
- W3209683451 cites W2108598243 @default.
- W3209683451 cites W2118978333 @default.
- W3209683451 cites W2132791018 @default.
- W3209683451 cites W2148143831 @default.
- W3209683451 cites W2171671120 @default.
- W3209683451 cites W2402290443 @default.
- W3209683451 cites W2461593871 @default.
- W3209683451 cites W2479224401 @default.
- W3209683451 cites W2527360010 @default.
- W3209683451 cites W2535869395 @default.
- W3209683451 cites W2550538833 @default.
- W3209683451 cites W2604256121 @default.
- W3209683451 cites W2604941932 @default.
- W3209683451 cites W2789894922 @default.
- W3209683451 cites W2810282612 @default.
- W3209683451 cites W2900834200 @default.
- W3209683451 cites W2903718012 @default.
- W3209683451 cites W2964050365 @default.
- W3209683451 cites W2985924634 @default.
- W3209683451 cites W2997068998 @default.
- W3209683451 cites W3010786729 @default.
- W3209683451 cites W3022574011 @default.
- W3209683451 cites W3036252633 @default.
- W3209683451 cites W3113905359 @default.
- W3209683451 cites W3141185203 @default.
- W3209683451 doi "https://doi.org/10.1109/tnse.2021.3100322" @default.
- W3209683451 hasPublicationYear "2022" @default.
- W3209683451 type Work @default.
- W3209683451 sameAs 3209683451 @default.
- W3209683451 citedByCount "0" @default.
- W3209683451 crossrefType "journal-article" @default.
- W3209683451 hasAuthorship W3209683451A5007408091 @default.
- W3209683451 hasAuthorship W3209683451A5012278873 @default.
- W3209683451 hasAuthorship W3209683451A5046000818 @default.
- W3209683451 hasAuthorship W3209683451A5047093288 @default.
- W3209683451 hasAuthorship W3209683451A5047767249 @default.
- W3209683451 hasAuthorship W3209683451A5051212920 @default.
- W3209683451 hasAuthorship W3209683451A5052284130 @default.
- W3209683451 hasAuthorship W3209683451A5079301418 @default.
- W3209683451 hasConcept C106131492 @default.
- W3209683451 hasConcept C111919701 @default.
- W3209683451 hasConcept C119857082 @default.
- W3209683451 hasConcept C124101348 @default.
- W3209683451 hasConcept C124952713 @default.
- W3209683451 hasConcept C140779682 @default.
- W3209683451 hasConcept C142362112 @default.
- W3209683451 hasConcept C154945302 @default.
- W3209683451 hasConcept C2780980858 @default.
- W3209683451 hasConcept C31972630 @default.
- W3209683451 hasConcept C41008148 @default.
- W3209683451 hasConcept C77967617 @default.
- W3209683451 hasConcept C81917197 @default.
- W3209683451 hasConcept C98045186 @default.
- W3209683451 hasConceptScore W3209683451C106131492 @default.
- W3209683451 hasConceptScore W3209683451C111919701 @default.
- W3209683451 hasConceptScore W3209683451C119857082 @default.
- W3209683451 hasConceptScore W3209683451C124101348 @default.
- W3209683451 hasConceptScore W3209683451C124952713 @default.
- W3209683451 hasConceptScore W3209683451C140779682 @default.
- W3209683451 hasConceptScore W3209683451C142362112 @default.
- W3209683451 hasConceptScore W3209683451C154945302 @default.
- W3209683451 hasConceptScore W3209683451C2780980858 @default.
- W3209683451 hasConceptScore W3209683451C31972630 @default.
- W3209683451 hasConceptScore W3209683451C41008148 @default.
- W3209683451 hasConceptScore W3209683451C77967617 @default.
- W3209683451 hasConceptScore W3209683451C81917197 @default.
- W3209683451 hasConceptScore W3209683451C98045186 @default.
- W3209683451 hasFunder F4320321001 @default.
- W3209683451 hasIssue "5" @default.
- W3209683451 hasLocation W32096834511 @default.
- W3209683451 hasOpenAccess W3209683451 @default.
- W3209683451 hasPrimaryLocation W32096834511 @default.
- W3209683451 hasRelatedWork W2239420864 @default.
- W3209683451 hasRelatedWork W2295628041 @default.
- W3209683451 hasRelatedWork W2597787948 @default.
- W3209683451 hasRelatedWork W2951786554 @default.
- W3209683451 hasRelatedWork W2954428433 @default.
- W3209683451 hasRelatedWork W3196155444 @default.
- W3209683451 hasRelatedWork W4286629047 @default.
- W3209683451 hasRelatedWork W4297094728 @default.