Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209703091> ?p ?o ?g. }
- W3209703091 endingPage "2670" @default.
- W3209703091 startingPage "2653" @default.
- W3209703091 abstract "Owing to technological developments, Medical image analysis has received considerable attention in the rapid detection and classification of diseases. The brain is an essential organ in humans. Brain tumors cause loss of memory, vision, and name. In 2020, approximately 18,020 deaths occurred due to brain tumors. These cases can be minimized if a brain tumor is diagnosed at a very early stage. Computer vision researchers have introduced several techniques for brain tumor detection and classification. However, owing to many factors, this is still a challenging task. These challenges relate to the tumor size, the shape of a tumor, location of the tumor, selection of important features, among others. In this study, we proposed a framework for multimodal brain tumor classification using an ensemble of optimal deep learning features. In the proposed framework, initially, a database is normalized in the form of high-grade glioma (HGG) and low-grade glioma (LGG) patients and then two pre-trained deep learning models (ResNet50 and Densenet201) are chosen. The deep learning models were modified and trained using transfer learning. Subsequently, the enhanced ant colony optimization algorithm is proposed for best feature selection from both deep models. The selected features are fused using a serial-based approach and classified using a cubic support vector machine. The experimental process was conducted on the BraTs2019 dataset and achieved accuracies of 87.8% and 84.6% for HGG and LGG, respectively. The comparison is performed using several classification methods, and it shows the significance of our proposed technique." @default.
- W3209703091 created "2021-11-08" @default.
- W3209703091 creator A5005197970 @default.
- W3209703091 creator A5019971091 @default.
- W3209703091 creator A5021159901 @default.
- W3209703091 creator A5029272905 @default.
- W3209703091 creator A5049950578 @default.
- W3209703091 creator A5056024500 @default.
- W3209703091 creator A5080374223 @default.
- W3209703091 creator A5091317561 @default.
- W3209703091 date "2021-01-01" @default.
- W3209703091 modified "2023-10-09" @default.
- W3209703091 title "An Ensemble of Optimal Deep Learning Features for Brain Tumor Classification" @default.
- W3209703091 cites W2028494674 @default.
- W3209703091 cites W2044523788 @default.
- W3209703091 cites W2789587241 @default.
- W3209703091 cites W2916213758 @default.
- W3209703091 cites W2939794185 @default.
- W3209703091 cites W2970321969 @default.
- W3209703091 cites W2983509244 @default.
- W3209703091 cites W2985860224 @default.
- W3209703091 cites W2988970523 @default.
- W3209703091 cites W2990124798 @default.
- W3209703091 cites W3003457589 @default.
- W3209703091 cites W3035967575 @default.
- W3209703091 cites W3044704315 @default.
- W3209703091 cites W3047434002 @default.
- W3209703091 cites W3084183795 @default.
- W3209703091 cites W3087421454 @default.
- W3209703091 cites W3088330075 @default.
- W3209703091 cites W3095142972 @default.
- W3209703091 cites W3105843050 @default.
- W3209703091 cites W3107425599 @default.
- W3209703091 cites W3124447910 @default.
- W3209703091 doi "https://doi.org/10.32604/cmc.2021.018606" @default.
- W3209703091 hasPublicationYear "2021" @default.
- W3209703091 type Work @default.
- W3209703091 sameAs 3209703091 @default.
- W3209703091 citedByCount "13" @default.
- W3209703091 countsByYear W32097030912021 @default.
- W3209703091 countsByYear W32097030912022 @default.
- W3209703091 countsByYear W32097030912023 @default.
- W3209703091 crossrefType "journal-article" @default.
- W3209703091 hasAuthorship W3209703091A5005197970 @default.
- W3209703091 hasAuthorship W3209703091A5019971091 @default.
- W3209703091 hasAuthorship W3209703091A5021159901 @default.
- W3209703091 hasAuthorship W3209703091A5029272905 @default.
- W3209703091 hasAuthorship W3209703091A5049950578 @default.
- W3209703091 hasAuthorship W3209703091A5056024500 @default.
- W3209703091 hasAuthorship W3209703091A5080374223 @default.
- W3209703091 hasAuthorship W3209703091A5091317561 @default.
- W3209703091 hasBestOaLocation W32097030911 @default.
- W3209703091 hasConcept C108583219 @default.
- W3209703091 hasConcept C111919701 @default.
- W3209703091 hasConcept C119857082 @default.
- W3209703091 hasConcept C12267149 @default.
- W3209703091 hasConcept C138885662 @default.
- W3209703091 hasConcept C142724271 @default.
- W3209703091 hasConcept C148483581 @default.
- W3209703091 hasConcept C150899416 @default.
- W3209703091 hasConcept C153180895 @default.
- W3209703091 hasConcept C154945302 @default.
- W3209703091 hasConcept C2776401178 @default.
- W3209703091 hasConcept C2778227246 @default.
- W3209703091 hasConcept C2779130545 @default.
- W3209703091 hasConcept C41008148 @default.
- W3209703091 hasConcept C41895202 @default.
- W3209703091 hasConcept C45942800 @default.
- W3209703091 hasConcept C502942594 @default.
- W3209703091 hasConcept C71924100 @default.
- W3209703091 hasConcept C81917197 @default.
- W3209703091 hasConcept C98045186 @default.
- W3209703091 hasConceptScore W3209703091C108583219 @default.
- W3209703091 hasConceptScore W3209703091C111919701 @default.
- W3209703091 hasConceptScore W3209703091C119857082 @default.
- W3209703091 hasConceptScore W3209703091C12267149 @default.
- W3209703091 hasConceptScore W3209703091C138885662 @default.
- W3209703091 hasConceptScore W3209703091C142724271 @default.
- W3209703091 hasConceptScore W3209703091C148483581 @default.
- W3209703091 hasConceptScore W3209703091C150899416 @default.
- W3209703091 hasConceptScore W3209703091C153180895 @default.
- W3209703091 hasConceptScore W3209703091C154945302 @default.
- W3209703091 hasConceptScore W3209703091C2776401178 @default.
- W3209703091 hasConceptScore W3209703091C2778227246 @default.
- W3209703091 hasConceptScore W3209703091C2779130545 @default.
- W3209703091 hasConceptScore W3209703091C41008148 @default.
- W3209703091 hasConceptScore W3209703091C41895202 @default.
- W3209703091 hasConceptScore W3209703091C45942800 @default.
- W3209703091 hasConceptScore W3209703091C502942594 @default.
- W3209703091 hasConceptScore W3209703091C71924100 @default.
- W3209703091 hasConceptScore W3209703091C81917197 @default.
- W3209703091 hasConceptScore W3209703091C98045186 @default.
- W3209703091 hasIssue "2" @default.
- W3209703091 hasLocation W32097030911 @default.
- W3209703091 hasOpenAccess W3209703091 @default.
- W3209703091 hasPrimaryLocation W32097030911 @default.
- W3209703091 hasRelatedWork W2520775273 @default.
- W3209703091 hasRelatedWork W2803710604 @default.