Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209709041> ?p ?o ?g. }
- W3209709041 endingPage "1166" @default.
- W3209709041 startingPage "1166" @default.
- W3209709041 abstract "In a complex underwater environment, finding a viable, collision-free path for an autonomous underwater vehicle (AUV) is a challenging task. The purpose of this paper is to establish a safe, real-time, and robust method of collision avoidance that improves the autonomy of AUVs. We propose a method based on active sonar, which utilizes a deep reinforcement learning algorithm to learn the processed sonar information to navigate the AUV in an uncertain environment. We compare the performance of double deep Q-network algorithms with that of a genetic algorithm and deep learning. We propose a line-of-sight guidance method to mitigate abrupt changes in the yaw direction and smooth the heading changes when the AUV switches trajectory. The different experimental results show that the double deep Q-network algorithms ensure excellent collision avoidance performance. The effectiveness of the algorithm proposed in this paper was verified in three environments: random static, mixed static, and complex dynamic. The results show that the proposed algorithm has significant advantages over other algorithms in terms of success rate, collision avoidance performance, and generalization ability. The double deep Q-network algorithm proposed in this paper is superior to the genetic algorithm and deep learning in terms of the running time, total path, performance in avoiding collisions with moving obstacles, and planning time for each step. After the algorithm is trained in a simulated environment, it can still perform online learning according to the information of the environment after deployment and adjust the weight of the network in real-time. These results demonstrate that the proposed approach has significant potential for practical applications." @default.
- W3209709041 created "2021-11-08" @default.
- W3209709041 creator A5024238951 @default.
- W3209709041 creator A5038568985 @default.
- W3209709041 creator A5042054600 @default.
- W3209709041 creator A5068894237 @default.
- W3209709041 creator A5082075857 @default.
- W3209709041 creator A5082977792 @default.
- W3209709041 date "2021-10-23" @default.
- W3209709041 modified "2023-10-17" @default.
- W3209709041 title "AUV Obstacle Avoidance Planning Based on Deep Reinforcement Learning" @default.
- W3209709041 cites W1983972263 @default.
- W3209709041 cites W2077831477 @default.
- W3209709041 cites W2088219864 @default.
- W3209709041 cites W2094595720 @default.
- W3209709041 cites W2106667095 @default.
- W3209709041 cites W2126357802 @default.
- W3209709041 cites W2145339207 @default.
- W3209709041 cites W2150478139 @default.
- W3209709041 cites W2161298439 @default.
- W3209709041 cites W2164261767 @default.
- W3209709041 cites W2169180499 @default.
- W3209709041 cites W2178108034 @default.
- W3209709041 cites W2413992829 @default.
- W3209709041 cites W2613993106 @default.
- W3209709041 cites W2728420778 @default.
- W3209709041 cites W2781681653 @default.
- W3209709041 cites W2971515405 @default.
- W3209709041 cites W2984588480 @default.
- W3209709041 cites W3006182894 @default.
- W3209709041 cites W3036557346 @default.
- W3209709041 cites W3174835665 @default.
- W3209709041 cites W32403112 @default.
- W3209709041 doi "https://doi.org/10.3390/jmse9111166" @default.
- W3209709041 hasPublicationYear "2021" @default.
- W3209709041 type Work @default.
- W3209709041 sameAs 3209709041 @default.
- W3209709041 citedByCount "18" @default.
- W3209709041 countsByYear W32097090412022 @default.
- W3209709041 countsByYear W32097090412023 @default.
- W3209709041 crossrefType "journal-article" @default.
- W3209709041 hasAuthorship W3209709041A5024238951 @default.
- W3209709041 hasAuthorship W3209709041A5038568985 @default.
- W3209709041 hasAuthorship W3209709041A5042054600 @default.
- W3209709041 hasAuthorship W3209709041A5068894237 @default.
- W3209709041 hasAuthorship W3209709041A5082075857 @default.
- W3209709041 hasAuthorship W3209709041A5082977792 @default.
- W3209709041 hasBestOaLocation W32097090411 @default.
- W3209709041 hasConcept C108583219 @default.
- W3209709041 hasConcept C11413529 @default.
- W3209709041 hasConcept C119857082 @default.
- W3209709041 hasConcept C121332964 @default.
- W3209709041 hasConcept C121704057 @default.
- W3209709041 hasConcept C127413603 @default.
- W3209709041 hasConcept C1276947 @default.
- W3209709041 hasConcept C13662910 @default.
- W3209709041 hasConcept C146978453 @default.
- W3209709041 hasConcept C154945302 @default.
- W3209709041 hasConcept C19966478 @default.
- W3209709041 hasConcept C2776937971 @default.
- W3209709041 hasConcept C2780864053 @default.
- W3209709041 hasConcept C38652104 @default.
- W3209709041 hasConcept C41008148 @default.
- W3209709041 hasConcept C44154836 @default.
- W3209709041 hasConcept C555745239 @default.
- W3209709041 hasConcept C6683253 @default.
- W3209709041 hasConcept C79403827 @default.
- W3209709041 hasConcept C81074085 @default.
- W3209709041 hasConcept C8880873 @default.
- W3209709041 hasConcept C90509273 @default.
- W3209709041 hasConcept C97541855 @default.
- W3209709041 hasConceptScore W3209709041C108583219 @default.
- W3209709041 hasConceptScore W3209709041C11413529 @default.
- W3209709041 hasConceptScore W3209709041C119857082 @default.
- W3209709041 hasConceptScore W3209709041C121332964 @default.
- W3209709041 hasConceptScore W3209709041C121704057 @default.
- W3209709041 hasConceptScore W3209709041C127413603 @default.
- W3209709041 hasConceptScore W3209709041C1276947 @default.
- W3209709041 hasConceptScore W3209709041C13662910 @default.
- W3209709041 hasConceptScore W3209709041C146978453 @default.
- W3209709041 hasConceptScore W3209709041C154945302 @default.
- W3209709041 hasConceptScore W3209709041C19966478 @default.
- W3209709041 hasConceptScore W3209709041C2776937971 @default.
- W3209709041 hasConceptScore W3209709041C2780864053 @default.
- W3209709041 hasConceptScore W3209709041C38652104 @default.
- W3209709041 hasConceptScore W3209709041C41008148 @default.
- W3209709041 hasConceptScore W3209709041C44154836 @default.
- W3209709041 hasConceptScore W3209709041C555745239 @default.
- W3209709041 hasConceptScore W3209709041C6683253 @default.
- W3209709041 hasConceptScore W3209709041C79403827 @default.
- W3209709041 hasConceptScore W3209709041C81074085 @default.
- W3209709041 hasConceptScore W3209709041C8880873 @default.
- W3209709041 hasConceptScore W3209709041C90509273 @default.
- W3209709041 hasConceptScore W3209709041C97541855 @default.
- W3209709041 hasFunder F4320321001 @default.
- W3209709041 hasFunder F4320323085 @default.
- W3209709041 hasIssue "11" @default.
- W3209709041 hasLocation W32097090411 @default.