Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209710797> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3209710797 abstract "Abstract Background Ever since the concept of preventive cardiology has come into vogue, several risk identification models have come up which combine several risk factors to create a risk prediction score for occurrence of cardiovascular (CV) event. While carrying a proven validation in Western population, none of the risk prediction model has been satisfactorily evaluated in Indians especially young <40 years old. Objectives To compare Artificial Intelligence based novel risk score with traditional risk scores in young (less than 40 years age) patients presenting with acute coronary syndrome (ACS) and to estimate the relative efficacy of different coronary artery disease (CAD) risk scores in young Indian Patients. Design Single center, Observational, Non-interventional study. Participants Cohort of Patients more than 20 but less than 40 years old with ACS in the department of Cardiology from 1st January 2019 to 31st October 2019. Methods 314 young patients [mean age 36.14±4.17 years] presenting with acute coronary syndrome (ACS) were enrolled. The three clinically most pertinent risk assessment models [Framingham Risk score (FRS), World Health Organization risk prediction charts (WHO/ISH), and QRISK3 scores] and Artificial Intelligence based novel risk score (AICVD) were applied on day 1 of presentation, and tried to see whether one risk score versus other risk score could have predicted the event earlier had we applied it before the occurrence of ACS. Risk factors considered included those already in traditional scoring systems and new risk factors (diet, alcohol, tobacco, dyslipidemia, physical activity, family history of heart disease, history of heart disease, heart rate, respiratory rate, chronic heart symptoms and psychological stress). Results WHO/ISH provided the lowest high risk estimate with only 1 (0.9%) patient estimated to be having >20% 10-year risk. The FRS estimated high risk (>20% 10-year risk) in 3 (1%) patients. The QRISK3 estimated high risk (>10% 10-year risk) in 20 (6.5%) patient. In comparison, AICVD risk prediction model stood tall by identifying 73 (23.2%) patients as high risk and 62.74% patients as more than moderate risk for having CV events at 7 years (p<0.001). Conclusion Perhaps, this is the first study which has compared artificial intelligence based novel risk prediction model with the three most commonly applied models, in the young Indian patients. We found that a cohort of young Indian patients presenting with ACS, when studied retrospectively, was identified as “high risk” most likely by AICVD risk prediction model rather than the traditional counterparts. The WHO/ISH risk prediction charts and FRS were the poorest predictors. Performance of QRISK3 score also remained less than satisfactory. These findings suggested that AICVD risk prediction model is a promising tool to assess for CV risk in Indian population. FUNDunding Acknowledgement Type of funding sources: None. Predictability of risk prediction models" @default.
- W3209710797 created "2021-11-08" @default.
- W3209710797 creator A5003378130 @default.
- W3209710797 creator A5004167688 @default.
- W3209710797 creator A5009313195 @default.
- W3209710797 creator A5022919271 @default.
- W3209710797 creator A5026400504 @default.
- W3209710797 creator A5029777498 @default.
- W3209710797 creator A5051610755 @default.
- W3209710797 creator A5053007259 @default.
- W3209710797 creator A5058449144 @default.
- W3209710797 creator A5071023433 @default.
- W3209710797 creator A5089502267 @default.
- W3209710797 date "2021-10-01" @default.
- W3209710797 modified "2023-09-26" @default.
- W3209710797 title "Comparison of traditional versus artificial intelligence based coronary artery disease risk prediction scores in young patients with acute coronary syndrome" @default.
- W3209710797 doi "https://doi.org/10.1093/eurheartj/ehab724.2482" @default.
- W3209710797 hasPublicationYear "2021" @default.
- W3209710797 type Work @default.
- W3209710797 sameAs 3209710797 @default.
- W3209710797 citedByCount "0" @default.
- W3209710797 crossrefType "journal-article" @default.
- W3209710797 hasAuthorship W3209710797A5003378130 @default.
- W3209710797 hasAuthorship W3209710797A5004167688 @default.
- W3209710797 hasAuthorship W3209710797A5009313195 @default.
- W3209710797 hasAuthorship W3209710797A5022919271 @default.
- W3209710797 hasAuthorship W3209710797A5026400504 @default.
- W3209710797 hasAuthorship W3209710797A5029777498 @default.
- W3209710797 hasAuthorship W3209710797A5051610755 @default.
- W3209710797 hasAuthorship W3209710797A5053007259 @default.
- W3209710797 hasAuthorship W3209710797A5058449144 @default.
- W3209710797 hasAuthorship W3209710797A5071023433 @default.
- W3209710797 hasAuthorship W3209710797A5089502267 @default.
- W3209710797 hasBestOaLocation W32097107971 @default.
- W3209710797 hasConcept C11783203 @default.
- W3209710797 hasConcept C12174686 @default.
- W3209710797 hasConcept C126322002 @default.
- W3209710797 hasConcept C2777698277 @default.
- W3209710797 hasConcept C2778096610 @default.
- W3209710797 hasConcept C2778213512 @default.
- W3209710797 hasConcept C2779134260 @default.
- W3209710797 hasConcept C2781179581 @default.
- W3209710797 hasConcept C2908647359 @default.
- W3209710797 hasConcept C38652104 @default.
- W3209710797 hasConcept C41008148 @default.
- W3209710797 hasConcept C500558357 @default.
- W3209710797 hasConcept C50440223 @default.
- W3209710797 hasConcept C71924100 @default.
- W3209710797 hasConcept C72563966 @default.
- W3209710797 hasConcept C99454951 @default.
- W3209710797 hasConceptScore W3209710797C11783203 @default.
- W3209710797 hasConceptScore W3209710797C12174686 @default.
- W3209710797 hasConceptScore W3209710797C126322002 @default.
- W3209710797 hasConceptScore W3209710797C2777698277 @default.
- W3209710797 hasConceptScore W3209710797C2778096610 @default.
- W3209710797 hasConceptScore W3209710797C2778213512 @default.
- W3209710797 hasConceptScore W3209710797C2779134260 @default.
- W3209710797 hasConceptScore W3209710797C2781179581 @default.
- W3209710797 hasConceptScore W3209710797C2908647359 @default.
- W3209710797 hasConceptScore W3209710797C38652104 @default.
- W3209710797 hasConceptScore W3209710797C41008148 @default.
- W3209710797 hasConceptScore W3209710797C500558357 @default.
- W3209710797 hasConceptScore W3209710797C50440223 @default.
- W3209710797 hasConceptScore W3209710797C71924100 @default.
- W3209710797 hasConceptScore W3209710797C72563966 @default.
- W3209710797 hasConceptScore W3209710797C99454951 @default.
- W3209710797 hasIssue "Supplement_1" @default.
- W3209710797 hasLocation W32097107971 @default.
- W3209710797 hasOpenAccess W3209710797 @default.
- W3209710797 hasPrimaryLocation W32097107971 @default.
- W3209710797 hasRelatedWork W13552743 @default.
- W3209710797 hasRelatedWork W2006634243 @default.
- W3209710797 hasRelatedWork W2037762039 @default.
- W3209710797 hasRelatedWork W2342988599 @default.
- W3209710797 hasRelatedWork W2486046308 @default.
- W3209710797 hasRelatedWork W2954206570 @default.
- W3209710797 hasRelatedWork W3011534846 @default.
- W3209710797 hasRelatedWork W3130390977 @default.
- W3209710797 hasRelatedWork W2100991737 @default.
- W3209710797 hasRelatedWork W2339780037 @default.
- W3209710797 hasVolume "42" @default.
- W3209710797 isParatext "false" @default.
- W3209710797 isRetracted "false" @default.
- W3209710797 magId "3209710797" @default.
- W3209710797 workType "article" @default.