Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209737363> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3209737363 abstract "As a natural disaster, landslide causes immeasurable losses. The particle swarm optimization algorithm (PSO) and genetic algorithm (GA) are used to modify the smoothing factor of the generalized regression neural network (GRNN), which improves the prediction efficiency of GRNN. By building a landslide monitoring platform, the rainfall, shallow soil moisture content, deep soil moisture content, soil glide stress, and surface displacement are used as five landslide factors for landslide risk analysis, and the modified landslide models are applied to the processing of landslide data. These two models are used to predict the landslide risk, and compared with the models of BP, Elman neural network and RBF neural network for landslide prediction. The results illustrate that the modified GRNN landslide models have better prediction effects of landslide risk than BP neural network model, Elman neural network model, and Radial basis function neural network model, which provides a reference for engineering practice." @default.
- W3209737363 created "2021-11-08" @default.
- W3209737363 creator A5030611214 @default.
- W3209737363 creator A5046976212 @default.
- W3209737363 creator A5049746461 @default.
- W3209737363 creator A5059913267 @default.
- W3209737363 creator A5063266246 @default.
- W3209737363 date "2021-01-01" @default.
- W3209737363 modified "2023-09-23" @default.
- W3209737363 title "Prediction of Landslide Risk Based on Modified Generalized Regression Neural Network Algorithm" @default.
- W3209737363 cites W1551818188 @default.
- W3209737363 cites W2037633404 @default.
- W3209737363 cites W2106836722 @default.
- W3209737363 cites W2508763158 @default.
- W3209737363 cites W2587089562 @default.
- W3209737363 cites W2981922616 @default.
- W3209737363 cites W2987514156 @default.
- W3209737363 cites W3011093476 @default.
- W3209737363 cites W3048247980 @default.
- W3209737363 cites W3131610641 @default.
- W3209737363 cites W3135926513 @default.
- W3209737363 doi "https://doi.org/10.1007/978-981-16-7213-2_29" @default.
- W3209737363 hasPublicationYear "2021" @default.
- W3209737363 type Work @default.
- W3209737363 sameAs 3209737363 @default.
- W3209737363 citedByCount "1" @default.
- W3209737363 countsByYear W32097373632022 @default.
- W3209737363 crossrefType "book-chapter" @default.
- W3209737363 hasAuthorship W3209737363A5030611214 @default.
- W3209737363 hasAuthorship W3209737363A5046976212 @default.
- W3209737363 hasAuthorship W3209737363A5049746461 @default.
- W3209737363 hasAuthorship W3209737363A5059913267 @default.
- W3209737363 hasAuthorship W3209737363A5063266246 @default.
- W3209737363 hasConcept C11413529 @default.
- W3209737363 hasConcept C124101348 @default.
- W3209737363 hasConcept C127313418 @default.
- W3209737363 hasConcept C154945302 @default.
- W3209737363 hasConcept C186295008 @default.
- W3209737363 hasConcept C187320778 @default.
- W3209737363 hasConcept C31972630 @default.
- W3209737363 hasConcept C3770464 @default.
- W3209737363 hasConcept C41008148 @default.
- W3209737363 hasConcept C50644808 @default.
- W3209737363 hasConcept C85617194 @default.
- W3209737363 hasConceptScore W3209737363C11413529 @default.
- W3209737363 hasConceptScore W3209737363C124101348 @default.
- W3209737363 hasConceptScore W3209737363C127313418 @default.
- W3209737363 hasConceptScore W3209737363C154945302 @default.
- W3209737363 hasConceptScore W3209737363C186295008 @default.
- W3209737363 hasConceptScore W3209737363C187320778 @default.
- W3209737363 hasConceptScore W3209737363C31972630 @default.
- W3209737363 hasConceptScore W3209737363C3770464 @default.
- W3209737363 hasConceptScore W3209737363C41008148 @default.
- W3209737363 hasConceptScore W3209737363C50644808 @default.
- W3209737363 hasConceptScore W3209737363C85617194 @default.
- W3209737363 hasLocation W32097373631 @default.
- W3209737363 hasOpenAccess W3209737363 @default.
- W3209737363 hasPrimaryLocation W32097373631 @default.
- W3209737363 hasRelatedWork W11546141 @default.
- W3209737363 hasRelatedWork W11784853 @default.
- W3209737363 hasRelatedWork W12405394 @default.
- W3209737363 hasRelatedWork W2187087 @default.
- W3209737363 hasRelatedWork W4922454 @default.
- W3209737363 hasRelatedWork W5536689 @default.
- W3209737363 hasRelatedWork W8688885 @default.
- W3209737363 hasRelatedWork W9367276 @default.
- W3209737363 hasRelatedWork W9605419 @default.
- W3209737363 hasRelatedWork W9710364 @default.
- W3209737363 isParatext "false" @default.
- W3209737363 isRetracted "false" @default.
- W3209737363 magId "3209737363" @default.
- W3209737363 workType "book-chapter" @default.