Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209742029> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3209742029 endingPage "1761" @default.
- W3209742029 startingPage "1755" @default.
- W3209742029 abstract "Highlights Models using LiDAR measurements and field observations as predictors can accurately predict alfalfa canopy height. The most efficient model used only the 95th percentile of LiDAR-measured height to estimate canopy height. Adding field observations of weed, insect, and disease pressure only marginally improved the predictive models. Abstract. Alfalfa is a popular crop that is grown worldwide because it is a nutritious feed for livestock and fixes nitrogen in the soil. Profitable alfalfa production greatly relies on monitoring the status of the alfalfa crop. Traditionally, producers have used crop assessment techniques that rely on manual measurements of alfalfa plant height, which can be used to predict nutritive quality and yield. These manual measurements are often labor-intensive and provide low-resolution data that is not acceptable for field-scale monitoring. The goal of this study was to assess the capability of a simple LiDAR setup to accurately estimate the average canopy height of an alfalfa crop. To achieve this goal, we first developed predictive models of alfalfa canopy height using LiDAR-derived measurements as predictor variables. Second, we assessed the accuracies of the models and compared the properties of each model. Third, we determined the optimal LiDAR-derived measurements to use to accurately predict average alfalfa canopy height. The data used in our models were collected in two separate fields planted with two different cultivars of alfalfa. Data collection was performed on five dates spanning one entire growth cycle during the summer of 2019. A simple single-beam LiDAR sensor was used to scan the canopy of sample plots within the fields. Manual measurements of plant height and field observations of insect, disease, and weed pressure were also recorded. Of the data used in the predictive models, the 95th percentile of LiDAR-measured height was found to be the optimal predictor for estimating alfalfa canopy height. Using the 95th percentile as a single predictor in a linear regression model of measured average canopy height resulted in an R2 of 0.90 and RMSE of 4.5 cm. Two other linear regression models using a combination of LiDAR measurements and LiDAR measurements with alfalfa health observations, respectfully, were developed for comparison. These models exhibited marginally better accuracies but required more inputs than the model only using the 95th percentile. This study shows how simple LiDAR configurations can be used for timely collection of accurate alfalfa canopy height data. From our findings, we suggest using the 95th percentile of LiDAR-derived canopy height to estimate alfalfa canopy height. This study lays the groundwork for research into more advanced LiDAR configurations for alfalfa applications, such as LiDAR-equipped UAVs. Keywords: Alfalfa, Canopy height, LiDAR." @default.
- W3209742029 created "2021-11-08" @default.
- W3209742029 creator A5005862041 @default.
- W3209742029 creator A5016814045 @default.
- W3209742029 creator A5022718908 @default.
- W3209742029 creator A5033570173 @default.
- W3209742029 creator A5057574830 @default.
- W3209742029 date "2021-01-01" @default.
- W3209742029 modified "2023-09-27" @default.
- W3209742029 title "Using LiDAR to Measure Alfalfa Canopy Height" @default.
- W3209742029 cites W1969456163 @default.
- W3209742029 cites W2011345111 @default.
- W3209742029 cites W2057659619 @default.
- W3209742029 cites W2148900376 @default.
- W3209742029 cites W2167781624 @default.
- W3209742029 cites W2290848578 @default.
- W3209742029 cites W2466427344 @default.
- W3209742029 cites W2768558813 @default.
- W3209742029 cites W2792434602 @default.
- W3209742029 cites W2798143686 @default.
- W3209742029 cites W2946378069 @default.
- W3209742029 cites W2955474105 @default.
- W3209742029 cites W2970778108 @default.
- W3209742029 doi "https://doi.org/10.13031/trans.14492" @default.
- W3209742029 hasPublicationYear "2021" @default.
- W3209742029 type Work @default.
- W3209742029 sameAs 3209742029 @default.
- W3209742029 citedByCount "0" @default.
- W3209742029 crossrefType "journal-article" @default.
- W3209742029 hasAuthorship W3209742029A5005862041 @default.
- W3209742029 hasAuthorship W3209742029A5016814045 @default.
- W3209742029 hasAuthorship W3209742029A5022718908 @default.
- W3209742029 hasAuthorship W3209742029A5033570173 @default.
- W3209742029 hasAuthorship W3209742029A5057574830 @default.
- W3209742029 hasConcept C101000010 @default.
- W3209742029 hasConcept C105795698 @default.
- W3209742029 hasConcept C122048520 @default.
- W3209742029 hasConcept C18903297 @default.
- W3209742029 hasConcept C205649164 @default.
- W3209742029 hasConcept C2993375840 @default.
- W3209742029 hasConcept C33923547 @default.
- W3209742029 hasConcept C39432304 @default.
- W3209742029 hasConcept C51399673 @default.
- W3209742029 hasConcept C62649853 @default.
- W3209742029 hasConcept C6557445 @default.
- W3209742029 hasConcept C86803240 @default.
- W3209742029 hasConceptScore W3209742029C101000010 @default.
- W3209742029 hasConceptScore W3209742029C105795698 @default.
- W3209742029 hasConceptScore W3209742029C122048520 @default.
- W3209742029 hasConceptScore W3209742029C18903297 @default.
- W3209742029 hasConceptScore W3209742029C205649164 @default.
- W3209742029 hasConceptScore W3209742029C2993375840 @default.
- W3209742029 hasConceptScore W3209742029C33923547 @default.
- W3209742029 hasConceptScore W3209742029C39432304 @default.
- W3209742029 hasConceptScore W3209742029C51399673 @default.
- W3209742029 hasConceptScore W3209742029C62649853 @default.
- W3209742029 hasConceptScore W3209742029C6557445 @default.
- W3209742029 hasConceptScore W3209742029C86803240 @default.
- W3209742029 hasIssue "6" @default.
- W3209742029 hasLocation W32097420291 @default.
- W3209742029 hasOpenAccess W3209742029 @default.
- W3209742029 hasPrimaryLocation W32097420291 @default.
- W3209742029 hasRelatedWork W2056769725 @default.
- W3209742029 hasRelatedWork W2065925762 @default.
- W3209742029 hasRelatedWork W2077978013 @default.
- W3209742029 hasRelatedWork W2118970069 @default.
- W3209742029 hasRelatedWork W2133677237 @default.
- W3209742029 hasRelatedWork W2765920222 @default.
- W3209742029 hasRelatedWork W2910432407 @default.
- W3209742029 hasRelatedWork W2972753220 @default.
- W3209742029 hasRelatedWork W3080696601 @default.
- W3209742029 hasRelatedWork W3089700404 @default.
- W3209742029 hasVolume "64" @default.
- W3209742029 isParatext "false" @default.
- W3209742029 isRetracted "false" @default.
- W3209742029 magId "3209742029" @default.
- W3209742029 workType "article" @default.