Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209746656> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3209746656 endingPage "23" @default.
- W3209746656 startingPage "16" @default.
- W3209746656 abstract "Molarity rate is increasing day by day at all over the world among both genders due to the increasing rate of lung cancer. It is a dangerous disease and usually it starts when unrestrained growth of abnormal cells start growing in lungs. The early detection of this disease has been a major challenge in the past hence, to overcome this issue many detection techniques have introduced over the time. In last decade, many Machine Learning classifiers have developed and adopted for the detection of lungs cancer. In this study, we have utilized six ML classifier such as ‘Support Vector Machine ‘(SVM) ‘K-Nearest Neighbor’ (KNN), Adaboost, ‘Conventional Neural Network’ (CNN), Xgboost and Naive Bayes for the detection of lungs cancer causing genes. We have collected dataset from publicly available intoGene browser. This dataset consists of 2193 genes in which both tumor and non-tumor genes are included. To find, which classifier provide high accuracy of lungs cancer detection as well as lungs cancer causing genes, this study have used the above-mentioned ML classifiers and found that CNN proved to be the best classifier with 86 percent accuracy among all classifiers." @default.
- W3209746656 created "2021-11-08" @default.
- W3209746656 creator A5035969366 @default.
- W3209746656 creator A5069173576 @default.
- W3209746656 creator A5078462995 @default.
- W3209746656 date "2021-03-30" @default.
- W3209746656 modified "2023-09-23" @default.
- W3209746656 title "Computational Identification of Lungs Cancer Causing Genes by Machine Learning (Ml) Classifiers" @default.
- W3209746656 doi "https://doi.org/10.21015/vtse.v9i1.751" @default.
- W3209746656 hasPublicationYear "2021" @default.
- W3209746656 type Work @default.
- W3209746656 sameAs 3209746656 @default.
- W3209746656 citedByCount "0" @default.
- W3209746656 crossrefType "journal-article" @default.
- W3209746656 hasAuthorship W3209746656A5035969366 @default.
- W3209746656 hasAuthorship W3209746656A5069173576 @default.
- W3209746656 hasAuthorship W3209746656A5078462995 @default.
- W3209746656 hasConcept C119857082 @default.
- W3209746656 hasConcept C12267149 @default.
- W3209746656 hasConcept C141404830 @default.
- W3209746656 hasConcept C142724271 @default.
- W3209746656 hasConcept C153180895 @default.
- W3209746656 hasConcept C154945302 @default.
- W3209746656 hasConcept C2776256026 @default.
- W3209746656 hasConcept C41008148 @default.
- W3209746656 hasConcept C50644808 @default.
- W3209746656 hasConcept C52001869 @default.
- W3209746656 hasConcept C71924100 @default.
- W3209746656 hasConcept C95623464 @default.
- W3209746656 hasConceptScore W3209746656C119857082 @default.
- W3209746656 hasConceptScore W3209746656C12267149 @default.
- W3209746656 hasConceptScore W3209746656C141404830 @default.
- W3209746656 hasConceptScore W3209746656C142724271 @default.
- W3209746656 hasConceptScore W3209746656C153180895 @default.
- W3209746656 hasConceptScore W3209746656C154945302 @default.
- W3209746656 hasConceptScore W3209746656C2776256026 @default.
- W3209746656 hasConceptScore W3209746656C41008148 @default.
- W3209746656 hasConceptScore W3209746656C50644808 @default.
- W3209746656 hasConceptScore W3209746656C52001869 @default.
- W3209746656 hasConceptScore W3209746656C71924100 @default.
- W3209746656 hasConceptScore W3209746656C95623464 @default.
- W3209746656 hasIssue "1" @default.
- W3209746656 hasLocation W32097466561 @default.
- W3209746656 hasOpenAccess W3209746656 @default.
- W3209746656 hasPrimaryLocation W32097466561 @default.
- W3209746656 hasRelatedWork W147040893 @default.
- W3209746656 hasRelatedWork W1543960810 @default.
- W3209746656 hasRelatedWork W1995343325 @default.
- W3209746656 hasRelatedWork W2086220584 @default.
- W3209746656 hasRelatedWork W2186858191 @default.
- W3209746656 hasRelatedWork W2330517759 @default.
- W3209746656 hasRelatedWork W2587530497 @default.
- W3209746656 hasRelatedWork W2884008556 @default.
- W3209746656 hasRelatedWork W2913982653 @default.
- W3209746656 hasRelatedWork W2983633090 @default.
- W3209746656 hasRelatedWork W3027789256 @default.
- W3209746656 hasRelatedWork W3034121906 @default.
- W3209746656 hasRelatedWork W3082519995 @default.
- W3209746656 hasRelatedWork W3095295475 @default.
- W3209746656 hasRelatedWork W3114071918 @default.
- W3209746656 hasRelatedWork W3166198428 @default.
- W3209746656 hasRelatedWork W3167254153 @default.
- W3209746656 hasRelatedWork W3169332996 @default.
- W3209746656 hasRelatedWork W3174758426 @default.
- W3209746656 hasRelatedWork W3198719622 @default.
- W3209746656 hasVolume "9" @default.
- W3209746656 isParatext "false" @default.
- W3209746656 isRetracted "false" @default.
- W3209746656 magId "3209746656" @default.
- W3209746656 workType "article" @default.