Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209746900> ?p ?o ?g. }
- W3209746900 abstract "The optimization along the chain processing-structure-properties-performance is one of the core objectives in data-driven materials science. In this sense, processes are supposed to manufacture workpieces with targeted material microstructures. These microstructures are defined by the material properties of interest and identifying them is a question of materials design. In the present paper, we addresse this issue and introduce a generic multi-task learning-based optimization approach. The approach enables the identification of sets of highly diverse microstructures for given desired properties and corresponding tolerances. Basically, the approach consists of an optimization algorithm that interacts with a machine learning model that combines multi-task learning with siamese neural networks. The resulting model (1) relates microstructures and properties, (2) estimates the likelihood of a microstructure of being producible, and (3) performs a distance preserving microstructure feature extraction in order to generate a lower dimensional latent feature space to enable efficient optimization. The proposed approach is applied on a crystallographic texture optimization problem for rolled steel sheets given desired properties." @default.
- W3209746900 created "2021-11-08" @default.
- W3209746900 creator A5005302320 @default.
- W3209746900 creator A5055369180 @default.
- W3209746900 creator A5060159143 @default.
- W3209746900 creator A5061354611 @default.
- W3209746900 creator A5069327998 @default.
- W3209746900 date "2021-10-27" @default.
- W3209746900 modified "2023-09-27" @default.
- W3209746900 title "A multi-task learning-based optimization approach for finding diverse sets of material microstructures with desired properties and its application to texture optimization." @default.
- W3209746900 cites W1490682695 @default.
- W3209746900 cites W1532247067 @default.
- W3209746900 cites W1533861849 @default.
- W3209746900 cites W1564372824 @default.
- W3209746900 cites W1582774210 @default.
- W3209746900 cites W1584406213 @default.
- W3209746900 cites W1595159159 @default.
- W3209746900 cites W1970060047 @default.
- W3209746900 cites W2001842014 @default.
- W3209746900 cites W2013378848 @default.
- W3209746900 cites W2016959837 @default.
- W3209746900 cites W2020609646 @default.
- W3209746900 cites W2027243444 @default.
- W3209746900 cites W2029447118 @default.
- W3209746900 cites W2036136551 @default.
- W3209746900 cites W2036293114 @default.
- W3209746900 cites W2038669746 @default.
- W3209746900 cites W2048464869 @default.
- W3209746900 cites W2050236324 @default.
- W3209746900 cites W2053329103 @default.
- W3209746900 cites W2055164360 @default.
- W3209746900 cites W2057022818 @default.
- W3209746900 cites W2061232593 @default.
- W3209746900 cites W2062259798 @default.
- W3209746900 cites W2078236179 @default.
- W3209746900 cites W2085607286 @default.
- W3209746900 cites W2087292325 @default.
- W3209746900 cites W2097998348 @default.
- W3209746900 cites W2100495367 @default.
- W3209746900 cites W2111348218 @default.
- W3209746900 cites W2122646361 @default.
- W3209746900 cites W2127589108 @default.
- W3209746900 cites W2127979711 @default.
- W3209746900 cites W2144513243 @default.
- W3209746900 cites W2152825437 @default.
- W3209746900 cites W2155529731 @default.
- W3209746900 cites W2163605009 @default.
- W3209746900 cites W2164720940 @default.
- W3209746900 cites W2262229344 @default.
- W3209746900 cites W2486208148 @default.
- W3209746900 cites W2489680901 @default.
- W3209746900 cites W2521414595 @default.
- W3209746900 cites W2528678970 @default.
- W3209746900 cites W2538890273 @default.
- W3209746900 cites W2593592895 @default.
- W3209746900 cites W2777965033 @default.
- W3209746900 cites W2783543328 @default.
- W3209746900 cites W2883863987 @default.
- W3209746900 cites W2889908171 @default.
- W3209746900 cites W2897929018 @default.
- W3209746900 cites W2910068345 @default.
- W3209746900 cites W2912469459 @default.
- W3209746900 cites W2913340405 @default.
- W3209746900 cites W2963784900 @default.
- W3209746900 cites W2964121744 @default.
- W3209746900 cites W2964433603 @default.
- W3209746900 cites W2978013153 @default.
- W3209746900 cites W3080427797 @default.
- W3209746900 cites W3119425748 @default.
- W3209746900 cites W3165527339 @default.
- W3209746900 cites W3199746041 @default.
- W3209746900 cites W47390315 @default.
- W3209746900 cites W577839611 @default.
- W3209746900 cites W2611886126 @default.
- W3209746900 hasPublicationYear "2021" @default.
- W3209746900 type Work @default.
- W3209746900 sameAs 3209746900 @default.
- W3209746900 citedByCount "0" @default.
- W3209746900 crossrefType "posted-content" @default.
- W3209746900 hasAuthorship W3209746900A5005302320 @default.
- W3209746900 hasAuthorship W3209746900A5055369180 @default.
- W3209746900 hasAuthorship W3209746900A5060159143 @default.
- W3209746900 hasAuthorship W3209746900A5061354611 @default.
- W3209746900 hasAuthorship W3209746900A5069327998 @default.
- W3209746900 hasConcept C11413529 @default.
- W3209746900 hasConcept C115961682 @default.
- W3209746900 hasConcept C116834253 @default.
- W3209746900 hasConcept C119857082 @default.
- W3209746900 hasConcept C127413603 @default.
- W3209746900 hasConcept C137836250 @default.
- W3209746900 hasConcept C138885662 @default.
- W3209746900 hasConcept C153180895 @default.
- W3209746900 hasConcept C154945302 @default.
- W3209746900 hasConcept C191897082 @default.
- W3209746900 hasConcept C192562407 @default.
- W3209746900 hasConcept C201995342 @default.
- W3209746900 hasConcept C2776401178 @default.
- W3209746900 hasConcept C2780451532 @default.
- W3209746900 hasConcept C2781195486 @default.
- W3209746900 hasConcept C41008148 @default.