Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209750664> ?p ?o ?g. }
- W3209750664 endingPage "117797" @default.
- W3209750664 startingPage "117797" @default.
- W3209750664 abstract "The content of fat, oil and grease (FOG) in the sewer network sediments is the key indicator for diagnosing sewer blockage and overflow. However, the traditional FOG detection is time-consuming and costly, and the establishment of mathematical models based on statistical methods to predict the content of FOG fail to provide satisfactory accuracy. Herein, a deep learning algorithm used a data-driven FOG content prediction model is proposed to achieve a more accurate prediction of FOG content. Meanwhile, global sensitivity analysis (GSA) is exploited to evaluate the contribution of input indicators to the output indicator (FOG) in the model, so that some input indicators that have less impact on the prediction performance can be screened out, the best combination of input indicators can be determined, and the operation cost of the model can be reduced. To evaluate the effectiveness of the proposed model, a case study was conducted in a city in southern China. The experimental results indicate that the prediction model obtains good FOG estimations and performs well from a single site to multiple sites with a mean R2 of 0.922, showing a good generalization performance. Through GSA, the key input indicators in the model were identified as pH, water temperature (T), relative humidity (RH), sewage flow (Flow), drinking water supply (DWS), velocity (V) and conductivity (σ), and the input indicators such as air pressure (AP), population (Pop.), and liquid level (LV) can be reduced without affecting the prediction accuracy of the model." @default.
- W3209750664 created "2021-11-08" @default.
- W3209750664 creator A5009164476 @default.
- W3209750664 creator A5032533121 @default.
- W3209750664 creator A5040862370 @default.
- W3209750664 creator A5044347472 @default.
- W3209750664 creator A5046340513 @default.
- W3209750664 creator A5046942454 @default.
- W3209750664 date "2021-12-01" @default.
- W3209750664 modified "2023-10-10" @default.
- W3209750664 title "Data-driven method based on deep learning algorithm for detecting fat, oil, and grease (FOG) of sewer networks in urban commercial areas" @default.
- W3209750664 cites W1977353066 @default.
- W3209750664 cites W1998027527 @default.
- W3209750664 cites W2049924583 @default.
- W3209750664 cites W2082397356 @default.
- W3209750664 cites W2332666947 @default.
- W3209750664 cites W2552366515 @default.
- W3209750664 cites W2586130591 @default.
- W3209750664 cites W2592082544 @default.
- W3209750664 cites W2756435182 @default.
- W3209750664 cites W2757789263 @default.
- W3209750664 cites W2793608821 @default.
- W3209750664 cites W2808054333 @default.
- W3209750664 cites W2811057976 @default.
- W3209750664 cites W2898461917 @default.
- W3209750664 cites W2926562299 @default.
- W3209750664 cites W2949220266 @default.
- W3209750664 cites W2963370351 @default.
- W3209750664 cites W2994440657 @default.
- W3209750664 cites W2995124022 @default.
- W3209750664 cites W2998681661 @default.
- W3209750664 cites W3009377873 @default.
- W3209750664 cites W3009865495 @default.
- W3209750664 cites W3036363354 @default.
- W3209750664 cites W3039623901 @default.
- W3209750664 cites W3049530872 @default.
- W3209750664 cites W3082531544 @default.
- W3209750664 cites W3084393668 @default.
- W3209750664 cites W3092945705 @default.
- W3209750664 cites W3093007897 @default.
- W3209750664 cites W3095456542 @default.
- W3209750664 cites W3097451558 @default.
- W3209750664 cites W3098296868 @default.
- W3209750664 cites W3121064191 @default.
- W3209750664 cites W3128444610 @default.
- W3209750664 cites W3128509874 @default.
- W3209750664 cites W3138535829 @default.
- W3209750664 cites W3153932301 @default.
- W3209750664 cites W3155699251 @default.
- W3209750664 cites W3164148382 @default.
- W3209750664 cites W3171249524 @default.
- W3209750664 cites W3189332573 @default.
- W3209750664 doi "https://doi.org/10.1016/j.watres.2021.117797" @default.
- W3209750664 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34731668" @default.
- W3209750664 hasPublicationYear "2021" @default.
- W3209750664 type Work @default.
- W3209750664 sameAs 3209750664 @default.
- W3209750664 citedByCount "19" @default.
- W3209750664 countsByYear W32097506642022 @default.
- W3209750664 countsByYear W32097506642023 @default.
- W3209750664 crossrefType "journal-article" @default.
- W3209750664 hasAuthorship W3209750664A5009164476 @default.
- W3209750664 hasAuthorship W3209750664A5032533121 @default.
- W3209750664 hasAuthorship W3209750664A5040862370 @default.
- W3209750664 hasAuthorship W3209750664A5044347472 @default.
- W3209750664 hasAuthorship W3209750664A5046340513 @default.
- W3209750664 hasAuthorship W3209750664A5046942454 @default.
- W3209750664 hasConcept C127413603 @default.
- W3209750664 hasConcept C134306372 @default.
- W3209750664 hasConcept C135510737 @default.
- W3209750664 hasConcept C162324750 @default.
- W3209750664 hasConcept C177148314 @default.
- W3209750664 hasConcept C185592680 @default.
- W3209750664 hasConcept C187736073 @default.
- W3209750664 hasConcept C190714865 @default.
- W3209750664 hasConcept C21200559 @default.
- W3209750664 hasConcept C24326235 @default.
- W3209750664 hasConcept C2777811205 @default.
- W3209750664 hasConcept C33923547 @default.
- W3209750664 hasConcept C39432304 @default.
- W3209750664 hasConcept C41008148 @default.
- W3209750664 hasConcept C55493867 @default.
- W3209750664 hasConcept C87717796 @default.
- W3209750664 hasConceptScore W3209750664C127413603 @default.
- W3209750664 hasConceptScore W3209750664C134306372 @default.
- W3209750664 hasConceptScore W3209750664C135510737 @default.
- W3209750664 hasConceptScore W3209750664C162324750 @default.
- W3209750664 hasConceptScore W3209750664C177148314 @default.
- W3209750664 hasConceptScore W3209750664C185592680 @default.
- W3209750664 hasConceptScore W3209750664C187736073 @default.
- W3209750664 hasConceptScore W3209750664C190714865 @default.
- W3209750664 hasConceptScore W3209750664C21200559 @default.
- W3209750664 hasConceptScore W3209750664C24326235 @default.
- W3209750664 hasConceptScore W3209750664C2777811205 @default.
- W3209750664 hasConceptScore W3209750664C33923547 @default.
- W3209750664 hasConceptScore W3209750664C39432304 @default.
- W3209750664 hasConceptScore W3209750664C41008148 @default.
- W3209750664 hasConceptScore W3209750664C55493867 @default.