Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209761689> ?p ?o ?g. }
- W3209761689 endingPage "1197" @default.
- W3209761689 startingPage "1186" @default.
- W3209761689 abstract "Liver steatosis is common and tracking disease evolution to steatohepatitis and cirrhosis is essential for risk stratification and resultant patient management. Consequently, diagnostic tools allowing categorization of liver parenchyma based on routine imaging are desirable. The study objective was to compare established mono-factorial, dynamic single parameter and iterative multiparametric routine computed tomography (CT) and magnetic resonance imaging (MRI) analyses to distinguish between liver steatosis, steatohepatitis, cirrhosis and normal liver parenchyma.A total of 285 multi-phase contrast enhanced CT and 122 MRI studies with histopathological correlation of underlying parenchymal condition were retrospectively included. Parenchymal conditions were characterized based on CT Hounsfield units (HU) or MRI signal intensity (SI) measurements and calculated HU or SI ratios between non-contrast and contrast enhanced imaging time points. First, the diagnostic accuracy of mono-factorial analyses using established, static non-contrast HU and in- to opposed phase SI change cut-offs to distinguish between parenchymal conditions was established. Second, single dynamic discriminator analyses, with optimized non-contrast and enhancement HU and SI ratio cut-off values derived from the data, employing receiver operating characteristic (ROC) curve areas under the curve (AUCs) and the Youden index for maximum accuracy, were used for disease diagnosis. Third, multifactorial analyses, employing multiple non-contrast and contrast enhanced HU and SI ratio cut-offs in a nested, predictive-modelling algorithm were performed to distinguish between normal parenchyma, liver steatosis, steatohepatitis and cirrhosis. CT and MRI analyses were performed separately.No single CT or MRI parameter showed significant difference between all four parenchymal conditions (each P>0.05). Mono-factorial static-CT-discriminator analyses identified liver steatosis with 75% accuracy. Mono-factorial MRI analyses identified steatosis with 89% accuracy. Single-dynamic CT parameter analyses identified normal parenchyma with 72% accuracy and cirrhosis with 75% accuracy. Single-dynamic MRI parameter analyses identified fatty parenchyma with 90% accuracy. Multifactorial CT analyzes identified normal parenchyma with 84%, liver steatosis with 95%, steatohepatitis with 95% and cirrhosis with 80% accuracy. Multifactorial predictive modelling of MRI parameters identified normal parenchyma with 79%, liver steatosis with 89%, steatohepatitis with 92% and cirrhosis with 89% accuracy.Multiparametric analyses of quantitative measurements derived from routine CT and MRI, utilizing a predictive modelling algorithm, can help to distinguish between normal liver parenchyma, liver steatosis, steatohepatitis and cirrhosis." @default.
- W3209761689 created "2021-11-08" @default.
- W3209761689 creator A5021281577 @default.
- W3209761689 creator A5023044832 @default.
- W3209761689 creator A5063345889 @default.
- W3209761689 creator A5065239218 @default.
- W3209761689 creator A5074227946 @default.
- W3209761689 creator A5079674255 @default.
- W3209761689 creator A5080174137 @default.
- W3209761689 date "2022-02-01" @default.
- W3209761689 modified "2023-09-25" @default.
- W3209761689 title "Computed tomography (CT) and magnetic resonance imaging (MRI) of diffuse liver disease: a multiparametric predictive modelling algorithm can aid categorization of liver parenchyma" @default.
- W3209761689 cites W1574141134 @default.
- W3209761689 cites W1837299962 @default.
- W3209761689 cites W1935079705 @default.
- W3209761689 cites W1999836143 @default.
- W3209761689 cites W2013418110 @default.
- W3209761689 cites W2042555983 @default.
- W3209761689 cites W2057151553 @default.
- W3209761689 cites W2061331348 @default.
- W3209761689 cites W2076645058 @default.
- W3209761689 cites W2079253085 @default.
- W3209761689 cites W2084461928 @default.
- W3209761689 cites W2096692015 @default.
- W3209761689 cites W2117440092 @default.
- W3209761689 cites W2121693549 @default.
- W3209761689 cites W2122496970 @default.
- W3209761689 cites W2123512407 @default.
- W3209761689 cites W2128366104 @default.
- W3209761689 cites W2135343562 @default.
- W3209761689 cites W2138482829 @default.
- W3209761689 cites W2151106782 @default.
- W3209761689 cites W2153997209 @default.
- W3209761689 cites W2160964569 @default.
- W3209761689 cites W2183370948 @default.
- W3209761689 cites W2404457105 @default.
- W3209761689 cites W2890294442 @default.
- W3209761689 cites W2974837498 @default.
- W3209761689 cites W3082717001 @default.
- W3209761689 cites W3093372896 @default.
- W3209761689 cites W4247258598 @default.
- W3209761689 doi "https://doi.org/10.21037/qims-21-384" @default.
- W3209761689 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35111615" @default.
- W3209761689 hasPublicationYear "2022" @default.
- W3209761689 type Work @default.
- W3209761689 sameAs 3209761689 @default.
- W3209761689 citedByCount "2" @default.
- W3209761689 countsByYear W32097616892022 @default.
- W3209761689 countsByYear W32097616892023 @default.
- W3209761689 crossrefType "journal-article" @default.
- W3209761689 hasAuthorship W3209761689A5021281577 @default.
- W3209761689 hasAuthorship W3209761689A5023044832 @default.
- W3209761689 hasAuthorship W3209761689A5063345889 @default.
- W3209761689 hasAuthorship W3209761689A5065239218 @default.
- W3209761689 hasAuthorship W3209761689A5074227946 @default.
- W3209761689 hasAuthorship W3209761689A5079674255 @default.
- W3209761689 hasAuthorship W3209761689A5080174137 @default.
- W3209761689 hasBestOaLocation W32097616891 @default.
- W3209761689 hasConcept C126322002 @default.
- W3209761689 hasConcept C126838900 @default.
- W3209761689 hasConcept C142724271 @default.
- W3209761689 hasConcept C143409427 @default.
- W3209761689 hasConcept C187954543 @default.
- W3209761689 hasConcept C2776175330 @default.
- W3209761689 hasConcept C2777214474 @default.
- W3209761689 hasConcept C2778772119 @default.
- W3209761689 hasConcept C2779134260 @default.
- W3209761689 hasConcept C2779478299 @default.
- W3209761689 hasConcept C2989005 @default.
- W3209761689 hasConcept C2994599478 @default.
- W3209761689 hasConcept C544519230 @default.
- W3209761689 hasConcept C58471807 @default.
- W3209761689 hasConcept C71924100 @default.
- W3209761689 hasConceptScore W3209761689C126322002 @default.
- W3209761689 hasConceptScore W3209761689C126838900 @default.
- W3209761689 hasConceptScore W3209761689C142724271 @default.
- W3209761689 hasConceptScore W3209761689C143409427 @default.
- W3209761689 hasConceptScore W3209761689C187954543 @default.
- W3209761689 hasConceptScore W3209761689C2776175330 @default.
- W3209761689 hasConceptScore W3209761689C2777214474 @default.
- W3209761689 hasConceptScore W3209761689C2778772119 @default.
- W3209761689 hasConceptScore W3209761689C2779134260 @default.
- W3209761689 hasConceptScore W3209761689C2779478299 @default.
- W3209761689 hasConceptScore W3209761689C2989005 @default.
- W3209761689 hasConceptScore W3209761689C2994599478 @default.
- W3209761689 hasConceptScore W3209761689C544519230 @default.
- W3209761689 hasConceptScore W3209761689C58471807 @default.
- W3209761689 hasConceptScore W3209761689C71924100 @default.
- W3209761689 hasIssue "2" @default.
- W3209761689 hasLocation W32097616891 @default.
- W3209761689 hasLocation W32097616892 @default.
- W3209761689 hasLocation W32097616893 @default.
- W3209761689 hasOpenAccess W3209761689 @default.
- W3209761689 hasPrimaryLocation W32097616891 @default.
- W3209761689 hasRelatedWork W1606133142 @default.
- W3209761689 hasRelatedWork W2021511244 @default.
- W3209761689 hasRelatedWork W2036534325 @default.
- W3209761689 hasRelatedWork W2067174853 @default.