Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209765984> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3209765984 abstract "Change detection is an interesting task in the field of remote sensing, thanks to many useful applications that range from land cover studies to anomalies' observation (landslips, snowslides, wide firewoods, floods, etc.). Satellites like Sentinel-2 provide a full coverage of our planet every few days, but transmitting multispectral images of the same region multiple times within a small time interval is not always an efficient operation. At the same time, the analysis of each image on ground requires a considerable amount of time and efforts that might be reduced if knowing in advance that a portion of the new data do not contain any additional information with respect to data acquired in a previous time. Therefore, the idea of comparing onboard a new image with an older one of the same region represents a powerful tool that can help to both reduce the bottleneck effect occurring during the transmission of data to the ground stations and organize the post-processing analysis in a more efficient way. In this study, deep learning methods are used to perform the change detection task with Sentinel-2 multispectral images. A pre-existing dataset focused on urban changes is exploited for training and validation purposes, while adopting two different approaches (semantic segmentation and classification). In addition, a benchmark test is conducted on a low-power consumption GPU, the NVIDIA Jetson AGX Xavier, to investigate throughput and speed performance with two different inference frameworks, TensorFlow and NVIDIA TensorRT, as this energy-efficient platform is suitable for the installation onboard the satellites in future missions." @default.
- W3209765984 created "2021-11-08" @default.
- W3209765984 creator A5065365016 @default.
- W3209765984 creator A5066192084 @default.
- W3209765984 creator A5091661047 @default.
- W3209765984 date "2021-10-22" @default.
- W3209765984 modified "2023-09-24" @default.
- W3209765984 title "Performance estimation of deep learning methods for change detection on satellite images with a low-power GPU" @default.
- W3209765984 doi "https://doi.org/10.22323/1.378.0013" @default.
- W3209765984 hasPublicationYear "2021" @default.
- W3209765984 type Work @default.
- W3209765984 sameAs 3209765984 @default.
- W3209765984 citedByCount "0" @default.
- W3209765984 crossrefType "proceedings-article" @default.
- W3209765984 hasAuthorship W3209765984A5065365016 @default.
- W3209765984 hasAuthorship W3209765984A5066192084 @default.
- W3209765984 hasAuthorship W3209765984A5091661047 @default.
- W3209765984 hasBestOaLocation W32097659841 @default.
- W3209765984 hasConcept C108583219 @default.
- W3209765984 hasConcept C127313418 @default.
- W3209765984 hasConcept C127413603 @default.
- W3209765984 hasConcept C13280743 @default.
- W3209765984 hasConcept C134066672 @default.
- W3209765984 hasConcept C146978453 @default.
- W3209765984 hasConcept C149635348 @default.
- W3209765984 hasConcept C154945302 @default.
- W3209765984 hasConcept C158379750 @default.
- W3209765984 hasConcept C162324750 @default.
- W3209765984 hasConcept C173163844 @default.
- W3209765984 hasConcept C185798385 @default.
- W3209765984 hasConcept C187736073 @default.
- W3209765984 hasConcept C19269812 @default.
- W3209765984 hasConcept C205649164 @default.
- W3209765984 hasConcept C2780451532 @default.
- W3209765984 hasConcept C2780513914 @default.
- W3209765984 hasConcept C31258907 @default.
- W3209765984 hasConcept C41008148 @default.
- W3209765984 hasConcept C62649853 @default.
- W3209765984 hasConcept C79403827 @default.
- W3209765984 hasConcept C89600930 @default.
- W3209765984 hasConceptScore W3209765984C108583219 @default.
- W3209765984 hasConceptScore W3209765984C127313418 @default.
- W3209765984 hasConceptScore W3209765984C127413603 @default.
- W3209765984 hasConceptScore W3209765984C13280743 @default.
- W3209765984 hasConceptScore W3209765984C134066672 @default.
- W3209765984 hasConceptScore W3209765984C146978453 @default.
- W3209765984 hasConceptScore W3209765984C149635348 @default.
- W3209765984 hasConceptScore W3209765984C154945302 @default.
- W3209765984 hasConceptScore W3209765984C158379750 @default.
- W3209765984 hasConceptScore W3209765984C162324750 @default.
- W3209765984 hasConceptScore W3209765984C173163844 @default.
- W3209765984 hasConceptScore W3209765984C185798385 @default.
- W3209765984 hasConceptScore W3209765984C187736073 @default.
- W3209765984 hasConceptScore W3209765984C19269812 @default.
- W3209765984 hasConceptScore W3209765984C205649164 @default.
- W3209765984 hasConceptScore W3209765984C2780451532 @default.
- W3209765984 hasConceptScore W3209765984C2780513914 @default.
- W3209765984 hasConceptScore W3209765984C31258907 @default.
- W3209765984 hasConceptScore W3209765984C41008148 @default.
- W3209765984 hasConceptScore W3209765984C62649853 @default.
- W3209765984 hasConceptScore W3209765984C79403827 @default.
- W3209765984 hasConceptScore W3209765984C89600930 @default.
- W3209765984 hasLocation W32097659841 @default.
- W3209765984 hasOpenAccess W3209765984 @default.
- W3209765984 hasPrimaryLocation W32097659841 @default.
- W3209765984 hasRelatedWork W10687049 @default.
- W3209765984 hasRelatedWork W11012074 @default.
- W3209765984 hasRelatedWork W2265167 @default.
- W3209765984 hasRelatedWork W47205 @default.
- W3209765984 hasRelatedWork W5642779 @default.
- W3209765984 hasRelatedWork W5715096 @default.
- W3209765984 hasRelatedWork W6058110 @default.
- W3209765984 hasRelatedWork W656488 @default.
- W3209765984 hasRelatedWork W6644376 @default.
- W3209765984 hasRelatedWork W946622 @default.
- W3209765984 isParatext "false" @default.
- W3209765984 isRetracted "false" @default.
- W3209765984 magId "3209765984" @default.
- W3209765984 workType "article" @default.