Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209767343> ?p ?o ?g. }
- W3209767343 endingPage "25" @default.
- W3209767343 startingPage "21" @default.
- W3209767343 abstract "To efficiently reconstruct magnetic resonance images (MRI) from highly undersampled measurements by using compressed sensing (CS), in this letter, we propose a hybrid regularization model from deep prior and low-rank prior. The local deep prior is explored by a fast flexible denoising convolutional neural network (FFDNet). To compensate for 1) the generalization capability of FFDNet on artifact noise caused by undersampling K-space and 2) the inaccurate noise estimation for various undersampling ratios, we model the low-rank prior as a weighted Schatten p-norm to obtain the global information of MRIs. The final model, combined by the local deep and low-rank priors, is solved by the alternating directional method of multipliers under the plug-and-play framework. Compared with the popular CS-MRI approaches, the experimental results demonstrate that the proposed method can achieve better reconstruction performance in terms of quality index and visual effects." @default.
- W3209767343 created "2021-11-08" @default.
- W3209767343 creator A5050738175 @default.
- W3209767343 creator A5051363890 @default.
- W3209767343 creator A5068682145 @default.
- W3209767343 creator A5077780974 @default.
- W3209767343 creator A5081692859 @default.
- W3209767343 date "2022-01-01" @default.
- W3209767343 modified "2023-10-17" @default.
- W3209767343 title "Compressed Sensing MRI by Integrating Deep Denoiser and Weighted Schatten P-Norm Minimization" @default.
- W3209767343 cites W1906770428 @default.
- W3209767343 cites W2005796482 @default.
- W3209767343 cites W2011710850 @default.
- W3209767343 cites W2018990310 @default.
- W3209767343 cites W2045105614 @default.
- W3209767343 cites W2048695508 @default.
- W3209767343 cites W2056370875 @default.
- W3209767343 cites W2087416986 @default.
- W3209767343 cites W2100556411 @default.
- W3209767343 cites W2101675075 @default.
- W3209767343 cites W2133665775 @default.
- W3209767343 cites W2146842127 @default.
- W3209767343 cites W2168668658 @default.
- W3209767343 cites W2620976957 @default.
- W3209767343 cites W2778924750 @default.
- W3209767343 cites W2790966157 @default.
- W3209767343 cites W2798559986 @default.
- W3209767343 cites W2902719825 @default.
- W3209767343 cites W2963682501 @default.
- W3209767343 cites W2963814976 @default.
- W3209767343 cites W2999778662 @default.
- W3209767343 cites W3014516197 @default.
- W3209767343 cites W3022291895 @default.
- W3209767343 cites W3104725225 @default.
- W3209767343 cites W4242059867 @default.
- W3209767343 cites W4250955649 @default.
- W3209767343 cites W4292363360 @default.
- W3209767343 doi "https://doi.org/10.1109/lsp.2021.3122338" @default.
- W3209767343 hasPublicationYear "2022" @default.
- W3209767343 type Work @default.
- W3209767343 sameAs 3209767343 @default.
- W3209767343 citedByCount "4" @default.
- W3209767343 countsByYear W32097673432022 @default.
- W3209767343 countsByYear W32097673432023 @default.
- W3209767343 crossrefType "journal-article" @default.
- W3209767343 hasAuthorship W3209767343A5050738175 @default.
- W3209767343 hasAuthorship W3209767343A5051363890 @default.
- W3209767343 hasAuthorship W3209767343A5068682145 @default.
- W3209767343 hasAuthorship W3209767343A5077780974 @default.
- W3209767343 hasAuthorship W3209767343A5081692859 @default.
- W3209767343 hasConcept C107673813 @default.
- W3209767343 hasConcept C11413529 @default.
- W3209767343 hasConcept C115961682 @default.
- W3209767343 hasConcept C11727466 @default.
- W3209767343 hasConcept C124851039 @default.
- W3209767343 hasConcept C136536468 @default.
- W3209767343 hasConcept C141379421 @default.
- W3209767343 hasConcept C147764199 @default.
- W3209767343 hasConcept C153180895 @default.
- W3209767343 hasConcept C154945302 @default.
- W3209767343 hasConcept C163294075 @default.
- W3209767343 hasConcept C177769412 @default.
- W3209767343 hasConcept C199360897 @default.
- W3209767343 hasConcept C2776135515 @default.
- W3209767343 hasConcept C2779010991 @default.
- W3209767343 hasConcept C2911011789 @default.
- W3209767343 hasConcept C41008148 @default.
- W3209767343 hasConcept C81363708 @default.
- W3209767343 hasConceptScore W3209767343C107673813 @default.
- W3209767343 hasConceptScore W3209767343C11413529 @default.
- W3209767343 hasConceptScore W3209767343C115961682 @default.
- W3209767343 hasConceptScore W3209767343C11727466 @default.
- W3209767343 hasConceptScore W3209767343C124851039 @default.
- W3209767343 hasConceptScore W3209767343C136536468 @default.
- W3209767343 hasConceptScore W3209767343C141379421 @default.
- W3209767343 hasConceptScore W3209767343C147764199 @default.
- W3209767343 hasConceptScore W3209767343C153180895 @default.
- W3209767343 hasConceptScore W3209767343C154945302 @default.
- W3209767343 hasConceptScore W3209767343C163294075 @default.
- W3209767343 hasConceptScore W3209767343C177769412 @default.
- W3209767343 hasConceptScore W3209767343C199360897 @default.
- W3209767343 hasConceptScore W3209767343C2776135515 @default.
- W3209767343 hasConceptScore W3209767343C2779010991 @default.
- W3209767343 hasConceptScore W3209767343C2911011789 @default.
- W3209767343 hasConceptScore W3209767343C41008148 @default.
- W3209767343 hasConceptScore W3209767343C81363708 @default.
- W3209767343 hasLocation W32097673431 @default.
- W3209767343 hasOpenAccess W3209767343 @default.
- W3209767343 hasPrimaryLocation W32097673431 @default.
- W3209767343 hasRelatedWork W1999371807 @default.
- W3209767343 hasRelatedWork W2070256194 @default.
- W3209767343 hasRelatedWork W2095072456 @default.
- W3209767343 hasRelatedWork W2149400409 @default.
- W3209767343 hasRelatedWork W2328485015 @default.
- W3209767343 hasRelatedWork W2596241234 @default.
- W3209767343 hasRelatedWork W4230961646 @default.
- W3209767343 hasRelatedWork W4291753649 @default.
- W3209767343 hasRelatedWork W4302304472 @default.