Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209781898> ?p ?o ?g. }
- W3209781898 endingPage "98" @default.
- W3209781898 startingPage "93" @default.
- W3209781898 abstract "This paper presents a brief overview of vibration-based damage identification studies based on Deep Learning (DL) in civil engineering structures. The presence, type, size, and propagation of structural damage on civil infrastructure have always been a topic of research. In the last couple of decades, there has been a significant shift in the damage detection paradigm when the advancements in sensing and computing technologies met with the ever-expanding use of artificial neural network algorithms. Machine-Learning (ML) tools enabled researchers to implement more feasible and faster tools in damage detection applications. When an artificial neural network has more than three layers, it is typically considered as a “deep” learning network. Being an important accomplishment of the ML era, DL tools enable complex systems which are made of several layers to learn implementations of data with outstanding categorization and compartmentalization capability. In fact, with proper training, a DL tool can operate directly with the unprocessed raw data and help the algorithm produce output data. Competitive capabilities like this led DL algorithms perform very well in complicated problems by dividing a relatively large problem into much smaller and more manageable portions. Specifically for damage identification and localization on civil infrastructure, Convolutional Neural Networks (CNNs) and Unsupervised Pretrained Networks (UPNs) are the known DL tools published in the literature. This paper presents an overview of these studies." @default.
- W3209781898 created "2021-11-08" @default.
- W3209781898 creator A5047979812 @default.
- W3209781898 creator A5051617175 @default.
- W3209781898 creator A5087538865 @default.
- W3209781898 date "2021-10-23" @default.
- W3209781898 modified "2023-10-16" @default.
- W3209781898 title "An Overview of Deep Learning Methods Used in Vibration-Based Damage Detection in Civil Engineering" @default.
- W3209781898 cites W1277424058 @default.
- W3209781898 cites W1494192115 @default.
- W3209781898 cites W1523493493 @default.
- W3209781898 cites W1955819710 @default.
- W3209781898 cites W1966332297 @default.
- W3209781898 cites W2014984356 @default.
- W3209781898 cites W2019949051 @default.
- W3209781898 cites W2043645759 @default.
- W3209781898 cites W2090076230 @default.
- W3209781898 cites W2100495367 @default.
- W3209781898 cites W2132424367 @default.
- W3209781898 cites W2184245906 @default.
- W3209781898 cites W2223222085 @default.
- W3209781898 cites W2291961022 @default.
- W3209781898 cites W2322787438 @default.
- W3209781898 cites W2323128517 @default.
- W3209781898 cites W2461729787 @default.
- W3209781898 cites W2508419234 @default.
- W3209781898 cites W2556345765 @default.
- W3209781898 cites W2600563756 @default.
- W3209781898 cites W2618530766 @default.
- W3209781898 cites W2714319255 @default.
- W3209781898 cites W2737404945 @default.
- W3209781898 cites W2746230914 @default.
- W3209781898 cites W2748435964 @default.
- W3209781898 cites W2756489700 @default.
- W3209781898 cites W2756789966 @default.
- W3209781898 cites W276362854 @default.
- W3209781898 cites W2775229114 @default.
- W3209781898 cites W2791965385 @default.
- W3209781898 cites W2793605784 @default.
- W3209781898 cites W2795086889 @default.
- W3209781898 cites W2800911105 @default.
- W3209781898 cites W2808943413 @default.
- W3209781898 cites W2884197763 @default.
- W3209781898 cites W2896568470 @default.
- W3209781898 cites W2904906816 @default.
- W3209781898 cites W2919115771 @default.
- W3209781898 cites W2939880928 @default.
- W3209781898 cites W2955855129 @default.
- W3209781898 cites W2971966787 @default.
- W3209781898 cites W2982105169 @default.
- W3209781898 cites W2989607463 @default.
- W3209781898 cites W3016123475 @default.
- W3209781898 cites W3088335263 @default.
- W3209781898 cites W3100777112 @default.
- W3209781898 cites W2063657717 @default.
- W3209781898 doi "https://doi.org/10.1007/978-3-030-77143-0_10" @default.
- W3209781898 hasPublicationYear "2021" @default.
- W3209781898 type Work @default.
- W3209781898 sameAs 3209781898 @default.
- W3209781898 citedByCount "4" @default.
- W3209781898 countsByYear W32097818982022 @default.
- W3209781898 countsByYear W32097818982023 @default.
- W3209781898 crossrefType "book-chapter" @default.
- W3209781898 hasAuthorship W3209781898A5047979812 @default.
- W3209781898 hasAuthorship W3209781898A5051617175 @default.
- W3209781898 hasAuthorship W3209781898A5087538865 @default.
- W3209781898 hasConcept C108583219 @default.
- W3209781898 hasConcept C115903868 @default.
- W3209781898 hasConcept C116834253 @default.
- W3209781898 hasConcept C119857082 @default.
- W3209781898 hasConcept C127413603 @default.
- W3209781898 hasConcept C154945302 @default.
- W3209781898 hasConcept C26713055 @default.
- W3209781898 hasConcept C41008148 @default.
- W3209781898 hasConcept C50644808 @default.
- W3209781898 hasConcept C59822182 @default.
- W3209781898 hasConcept C81363708 @default.
- W3209781898 hasConcept C86803240 @default.
- W3209781898 hasConcept C94124525 @default.
- W3209781898 hasConceptScore W3209781898C108583219 @default.
- W3209781898 hasConceptScore W3209781898C115903868 @default.
- W3209781898 hasConceptScore W3209781898C116834253 @default.
- W3209781898 hasConceptScore W3209781898C119857082 @default.
- W3209781898 hasConceptScore W3209781898C127413603 @default.
- W3209781898 hasConceptScore W3209781898C154945302 @default.
- W3209781898 hasConceptScore W3209781898C26713055 @default.
- W3209781898 hasConceptScore W3209781898C41008148 @default.
- W3209781898 hasConceptScore W3209781898C50644808 @default.
- W3209781898 hasConceptScore W3209781898C59822182 @default.
- W3209781898 hasConceptScore W3209781898C81363708 @default.
- W3209781898 hasConceptScore W3209781898C86803240 @default.
- W3209781898 hasConceptScore W3209781898C94124525 @default.
- W3209781898 hasLocation W32097818981 @default.
- W3209781898 hasOpenAccess W3209781898 @default.
- W3209781898 hasPrimaryLocation W32097818981 @default.
- W3209781898 hasRelatedWork W2337926734 @default.
- W3209781898 hasRelatedWork W2731899572 @default.
- W3209781898 hasRelatedWork W3133861977 @default.