Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209861741> ?p ?o ?g. }
- W3209861741 endingPage "12" @default.
- W3209861741 startingPage "1" @default.
- W3209861741 abstract "Due to the changeable operating conditions of rotating machinery, the feature distributions of fault are usually changed. Most current cross-domain intelligent fault diagnosis methods only achieve global domain alignment, while ignoring the class discrepancy, resulting in the misclassification of the target domain samples near the class boundary. In this article, a novel joint domain alignment and class alignment (JDACA) method is proposed for cross-domain fault diagnosis of rotating machinery. In JDACA, the strategy of synchronously implementing global domain alignment and class alignment is innovatively proposed. First, a feature extractor and two discrepant classifiers are established to extract high-level features and output predicted results. Then, the maximum mean discrepancy (MMD) loss is used to reduce the marginal distribution discrepancy of high-level features between the source domain and target domain. Finally, the classifier discrepancy loss and the contrastive loss are creatively combined for class alignment learning, which can effectively reduce the conditional probability discrepancy between the source domain and target domain. Moreover, two experiment cases demonstrate the effectiveness of the proposed cross-domain diagnostic method." @default.
- W3209861741 created "2021-11-08" @default.
- W3209861741 creator A5031848640 @default.
- W3209861741 creator A5051011643 @default.
- W3209861741 creator A5067104727 @default.
- W3209861741 creator A5081838860 @default.
- W3209861741 date "2021-01-01" @default.
- W3209861741 modified "2023-10-01" @default.
- W3209861741 title "Joint Domain Alignment and Class Alignment Method for Cross-Domain Fault Diagnosis of Rotating Machinery" @default.
- W3209861741 cites W1438045566 @default.
- W3209861741 cites W172260869 @default.
- W3209861741 cites W2062227835 @default.
- W3209861741 cites W2096943734 @default.
- W3209861741 cites W2115403315 @default.
- W3209861741 cites W2164943005 @default.
- W3209861741 cites W2404692435 @default.
- W3209861741 cites W2556013418 @default.
- W3209861741 cites W2735326783 @default.
- W3209861741 cites W2750513898 @default.
- W3209861741 cites W2798149494 @default.
- W3209861741 cites W2891319189 @default.
- W3209861741 cites W2898375427 @default.
- W3209861741 cites W2899279252 @default.
- W3209861741 cites W2902985761 @default.
- W3209861741 cites W2903917280 @default.
- W3209861741 cites W2904218127 @default.
- W3209861741 cites W2906578288 @default.
- W3209861741 cites W2907541186 @default.
- W3209861741 cites W2914309864 @default.
- W3209861741 cites W2917014261 @default.
- W3209861741 cites W2925209208 @default.
- W3209861741 cites W2927893014 @default.
- W3209861741 cites W2940935128 @default.
- W3209861741 cites W2945302013 @default.
- W3209861741 cites W2962687275 @default.
- W3209861741 cites W2964117661 @default.
- W3209861741 cites W2966813263 @default.
- W3209861741 cites W2968409655 @default.
- W3209861741 cites W2969372261 @default.
- W3209861741 cites W2971878484 @default.
- W3209861741 cites W2982259084 @default.
- W3209861741 cites W3006560346 @default.
- W3209861741 cites W3015913963 @default.
- W3209861741 cites W3021496598 @default.
- W3209861741 cites W3021632667 @default.
- W3209861741 cites W3033335985 @default.
- W3209861741 cites W3040853111 @default.
- W3209861741 cites W3040865353 @default.
- W3209861741 cites W3089207818 @default.
- W3209861741 cites W3095770430 @default.
- W3209861741 cites W3099827684 @default.
- W3209861741 cites W3118876385 @default.
- W3209861741 cites W3128151922 @default.
- W3209861741 cites W3171203743 @default.
- W3209861741 cites W3210068417 @default.
- W3209861741 cites W3210951423 @default.
- W3209861741 doi "https://doi.org/10.1109/tim.2021.3120790" @default.
- W3209861741 hasPublicationYear "2021" @default.
- W3209861741 type Work @default.
- W3209861741 sameAs 3209861741 @default.
- W3209861741 citedByCount "4" @default.
- W3209861741 countsByYear W32098617412022 @default.
- W3209861741 countsByYear W32098617412023 @default.
- W3209861741 crossrefType "journal-article" @default.
- W3209861741 hasAuthorship W3209861741A5031848640 @default.
- W3209861741 hasAuthorship W3209861741A5051011643 @default.
- W3209861741 hasAuthorship W3209861741A5067104727 @default.
- W3209861741 hasAuthorship W3209861741A5081838860 @default.
- W3209861741 hasConcept C105795698 @default.
- W3209861741 hasConcept C11413529 @default.
- W3209861741 hasConcept C127313418 @default.
- W3209861741 hasConcept C127413603 @default.
- W3209861741 hasConcept C134306372 @default.
- W3209861741 hasConcept C138885662 @default.
- W3209861741 hasConcept C153180895 @default.
- W3209861741 hasConcept C154945302 @default.
- W3209861741 hasConcept C165205528 @default.
- W3209861741 hasConcept C170154142 @default.
- W3209861741 hasConcept C175551986 @default.
- W3209861741 hasConcept C18555067 @default.
- W3209861741 hasConcept C18653775 @default.
- W3209861741 hasConcept C2776401178 @default.
- W3209861741 hasConcept C33923547 @default.
- W3209861741 hasConcept C36503486 @default.
- W3209861741 hasConcept C41008148 @default.
- W3209861741 hasConcept C41895202 @default.
- W3209861741 hasConcept C52622490 @default.
- W3209861741 hasConcept C95623464 @default.
- W3209861741 hasConceptScore W3209861741C105795698 @default.
- W3209861741 hasConceptScore W3209861741C11413529 @default.
- W3209861741 hasConceptScore W3209861741C127313418 @default.
- W3209861741 hasConceptScore W3209861741C127413603 @default.
- W3209861741 hasConceptScore W3209861741C134306372 @default.
- W3209861741 hasConceptScore W3209861741C138885662 @default.
- W3209861741 hasConceptScore W3209861741C153180895 @default.
- W3209861741 hasConceptScore W3209861741C154945302 @default.
- W3209861741 hasConceptScore W3209861741C165205528 @default.
- W3209861741 hasConceptScore W3209861741C170154142 @default.