Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209862485> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3209862485 endingPage "6598" @default.
- W3209862485 startingPage "6587" @default.
- W3209862485 abstract "Reservoirs are hydrocarbons (oil and gas) bearing subsurface structures (formation) in which wells are drilled to produce the fluids to the surface. Well testing is a method of studying pressures and their corresponding rates from an individual well, to analyze the various characteristics of a reservoir, which helps in optimum management of the production operations. In this paper, we have applied one of the most popular supervised learning algorithms known as Artificial Neural Networks (ANN) for predicting the permeability (conductivity) of the formation. The well testing data consisting of well head pressure, down hole gauge pressure, flow rates for oil and water, P*, P-1hour, etc. were used as input features for training the model. A 4-layer dense ANN architecture consisting of one input and output layer each and two hidden layers was built for training and testing the model." @default.
- W3209862485 created "2021-11-08" @default.
- W3209862485 creator A5005027548 @default.
- W3209862485 creator A5053132961 @default.
- W3209862485 date "2022-04-24" @default.
- W3209862485 modified "2023-09-27" @default.
- W3209862485 title "A Machine Learning Approach Towards Predicting Formation Permeability Using Real-Time Data" @default.
- W3209862485 cites W2973473940 @default.
- W3209862485 cites W2974786649 @default.
- W3209862485 cites W2999896577 @default.
- W3209862485 cites W3033294925 @default.
- W3209862485 cites W3190515590 @default.
- W3209862485 doi "https://doi.org/10.1149/10701.6587ecst" @default.
- W3209862485 hasPublicationYear "2022" @default.
- W3209862485 type Work @default.
- W3209862485 sameAs 3209862485 @default.
- W3209862485 citedByCount "0" @default.
- W3209862485 crossrefType "journal-article" @default.
- W3209862485 hasAuthorship W3209862485A5005027548 @default.
- W3209862485 hasAuthorship W3209862485A5053132961 @default.
- W3209862485 hasConcept C108583219 @default.
- W3209862485 hasConcept C120882062 @default.
- W3209862485 hasConcept C127313418 @default.
- W3209862485 hasConcept C135796866 @default.
- W3209862485 hasConcept C147168706 @default.
- W3209862485 hasConcept C154945302 @default.
- W3209862485 hasConcept C185592680 @default.
- W3209862485 hasConcept C2777560178 @default.
- W3209862485 hasConcept C2984309096 @default.
- W3209862485 hasConcept C41008148 @default.
- W3209862485 hasConcept C41625074 @default.
- W3209862485 hasConcept C50644808 @default.
- W3209862485 hasConcept C55493867 @default.
- W3209862485 hasConcept C78762247 @default.
- W3209862485 hasConceptScore W3209862485C108583219 @default.
- W3209862485 hasConceptScore W3209862485C120882062 @default.
- W3209862485 hasConceptScore W3209862485C127313418 @default.
- W3209862485 hasConceptScore W3209862485C135796866 @default.
- W3209862485 hasConceptScore W3209862485C147168706 @default.
- W3209862485 hasConceptScore W3209862485C154945302 @default.
- W3209862485 hasConceptScore W3209862485C185592680 @default.
- W3209862485 hasConceptScore W3209862485C2777560178 @default.
- W3209862485 hasConceptScore W3209862485C2984309096 @default.
- W3209862485 hasConceptScore W3209862485C41008148 @default.
- W3209862485 hasConceptScore W3209862485C41625074 @default.
- W3209862485 hasConceptScore W3209862485C50644808 @default.
- W3209862485 hasConceptScore W3209862485C55493867 @default.
- W3209862485 hasConceptScore W3209862485C78762247 @default.
- W3209862485 hasIssue "1" @default.
- W3209862485 hasLocation W32098624851 @default.
- W3209862485 hasOpenAccess W3209862485 @default.
- W3209862485 hasPrimaryLocation W32098624851 @default.
- W3209862485 hasRelatedWork W1170143603 @default.
- W3209862485 hasRelatedWork W1967853692 @default.
- W3209862485 hasRelatedWork W1979977714 @default.
- W3209862485 hasRelatedWork W2000899332 @default.
- W3209862485 hasRelatedWork W2051068313 @default.
- W3209862485 hasRelatedWork W2348641400 @default.
- W3209862485 hasRelatedWork W2371095421 @default.
- W3209862485 hasRelatedWork W2385223743 @default.
- W3209862485 hasRelatedWork W2391242308 @default.
- W3209862485 hasRelatedWork W3136934181 @default.
- W3209862485 hasVolume "107" @default.
- W3209862485 isParatext "false" @default.
- W3209862485 isRetracted "false" @default.
- W3209862485 magId "3209862485" @default.
- W3209862485 workType "article" @default.