Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209875211> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3209875211 endingPage "3883" @default.
- W3209875211 startingPage "3883" @default.
- W3209875211 abstract "Attention-based methods for deep neural networks constitute a technique that has attracted increased interest in recent years. Attention mechanisms can focus on important parts of a sequence and, as a result, enhance the performance of neural networks in a variety of tasks, including sentiment analysis, emotion recognition, machine translation and speech recognition. In this work, we study attention-based models built on recurrent neural networks (RNNs) and examine their performance in various contexts of sentiment analysis. Self-attention, global-attention and hierarchical-attention methods are examined under various deep neural models, training methods and hyperparameters. Even though attention mechanisms are a powerful recent concept in the field of deep learning, their exact effectiveness in sentiment analysis is yet to be thoroughly assessed. A comparative analysis is performed in a text sentiment classification task where baseline models are compared with and without the use of attention for every experiment. The experimental study additionally examines the proposed models’ ability in recognizing opinions and emotions in movie reviews. The results indicate that attention-based models lead to great improvements in the performance of deep neural models showcasing up to a 3.5% improvement in their accuracy." @default.
- W3209875211 created "2021-11-08" @default.
- W3209875211 creator A5013384377 @default.
- W3209875211 creator A5039874465 @default.
- W3209875211 creator A5046246683 @default.
- W3209875211 creator A5046780523 @default.
- W3209875211 date "2021-04-25" @default.
- W3209875211 modified "2023-09-30" @default.
- W3209875211 title "Examining Attention Mechanisms in Deep Learning Models for Sentiment Analysis" @default.
- W3209875211 cites W2064675550 @default.
- W3209875211 cites W2069143585 @default.
- W3209875211 cites W2592160412 @default.
- W3209875211 cites W2794284562 @default.
- W3209875211 cites W2899329739 @default.
- W3209875211 cites W2907778281 @default.
- W3209875211 cites W2914767245 @default.
- W3209875211 cites W2918087949 @default.
- W3209875211 cites W2963874170 @default.
- W3209875211 cites W2993843842 @default.
- W3209875211 cites W2994199588 @default.
- W3209875211 cites W3022013598 @default.
- W3209875211 cites W3023726311 @default.
- W3209875211 cites W3024810126 @default.
- W3209875211 cites W3081987387 @default.
- W3209875211 cites W3084484668 @default.
- W3209875211 cites W3102944297 @default.
- W3209875211 cites W3118826611 @default.
- W3209875211 cites W4231109964 @default.
- W3209875211 doi "https://doi.org/10.3390/app11093883" @default.
- W3209875211 hasPublicationYear "2021" @default.
- W3209875211 type Work @default.
- W3209875211 sameAs 3209875211 @default.
- W3209875211 citedByCount "22" @default.
- W3209875211 countsByYear W32098752112021 @default.
- W3209875211 countsByYear W32098752112022 @default.
- W3209875211 countsByYear W32098752112023 @default.
- W3209875211 crossrefType "journal-article" @default.
- W3209875211 hasAuthorship W3209875211A5013384377 @default.
- W3209875211 hasAuthorship W3209875211A5039874465 @default.
- W3209875211 hasAuthorship W3209875211A5046246683 @default.
- W3209875211 hasAuthorship W3209875211A5046780523 @default.
- W3209875211 hasBestOaLocation W32098752111 @default.
- W3209875211 hasConcept C108583219 @default.
- W3209875211 hasConcept C119857082 @default.
- W3209875211 hasConcept C136197465 @default.
- W3209875211 hasConcept C147168706 @default.
- W3209875211 hasConcept C154945302 @default.
- W3209875211 hasConcept C162324750 @default.
- W3209875211 hasConcept C187736073 @default.
- W3209875211 hasConcept C2780451532 @default.
- W3209875211 hasConcept C2984842247 @default.
- W3209875211 hasConcept C41008148 @default.
- W3209875211 hasConcept C50644808 @default.
- W3209875211 hasConcept C66402592 @default.
- W3209875211 hasConcept C8642999 @default.
- W3209875211 hasConceptScore W3209875211C108583219 @default.
- W3209875211 hasConceptScore W3209875211C119857082 @default.
- W3209875211 hasConceptScore W3209875211C136197465 @default.
- W3209875211 hasConceptScore W3209875211C147168706 @default.
- W3209875211 hasConceptScore W3209875211C154945302 @default.
- W3209875211 hasConceptScore W3209875211C162324750 @default.
- W3209875211 hasConceptScore W3209875211C187736073 @default.
- W3209875211 hasConceptScore W3209875211C2780451532 @default.
- W3209875211 hasConceptScore W3209875211C2984842247 @default.
- W3209875211 hasConceptScore W3209875211C41008148 @default.
- W3209875211 hasConceptScore W3209875211C50644808 @default.
- W3209875211 hasConceptScore W3209875211C66402592 @default.
- W3209875211 hasConceptScore W3209875211C8642999 @default.
- W3209875211 hasIssue "9" @default.
- W3209875211 hasLocation W32098752111 @default.
- W3209875211 hasLocation W32098752112 @default.
- W3209875211 hasOpenAccess W3209875211 @default.
- W3209875211 hasPrimaryLocation W32098752111 @default.
- W3209875211 hasRelatedWork W2897745724 @default.
- W3209875211 hasRelatedWork W3047644063 @default.
- W3209875211 hasRelatedWork W3140501783 @default.
- W3209875211 hasRelatedWork W3192794374 @default.
- W3209875211 hasRelatedWork W4223943233 @default.
- W3209875211 hasRelatedWork W4295309597 @default.
- W3209875211 hasRelatedWork W4312200629 @default.
- W3209875211 hasRelatedWork W4360585206 @default.
- W3209875211 hasRelatedWork W4364306694 @default.
- W3209875211 hasRelatedWork W4380075502 @default.
- W3209875211 hasVolume "11" @default.
- W3209875211 isParatext "false" @default.
- W3209875211 isRetracted "false" @default.
- W3209875211 magId "3209875211" @default.
- W3209875211 workType "article" @default.