Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209898210> ?p ?o ?g. }
- W3209898210 endingPage "54" @default.
- W3209898210 startingPage "43" @default.
- W3209898210 abstract "Purpose The present study aims to construct ensemble machine learning (EML) algorithms for groundwater potentiality mapping (GPM) in the Teesta River basin of Bangladesh, including random forest (RF) and random subspace (RSS). Design/methodology/approach The RF and RSS models have been implemented for integrating 14 selected groundwater condition parametres with groundwater inventories for generating GPMs. The GPM were then validated using the empirical and bionormal receiver operating characteristics (ROC) curve. Findings The very high (831–1200 km 2 ) and high groundwater potential areas (521–680 km 2 ) were predicted using EML algorithms. The RSS (AUC-0.892) model outperformed RF model based on ROC's area under curve (AUC). Originality/value Two new EML models have been constructed for GPM. These findings will aid in proposing sustainable water resource management plans." @default.
- W3209898210 created "2021-11-08" @default.
- W3209898210 creator A5003837104 @default.
- W3209898210 creator A5044442415 @default.
- W3209898210 creator A5060374600 @default.
- W3209898210 creator A5064098467 @default.
- W3209898210 creator A5067395358 @default.
- W3209898210 date "2021-11-02" @default.
- W3209898210 modified "2023-10-06" @default.
- W3209898210 title "Groundwater potentiality mapping using ensemble machine learning algorithms for sustainable groundwater management" @default.
- W3209898210 cites W1965920041 @default.
- W3209898210 cites W1975190596 @default.
- W3209898210 cites W1985288162 @default.
- W3209898210 cites W1999131726 @default.
- W3209898210 cites W2007075065 @default.
- W3209898210 cites W2013341039 @default.
- W3209898210 cites W2110794816 @default.
- W3209898210 cites W2113242816 @default.
- W3209898210 cites W2128954654 @default.
- W3209898210 cites W2157124852 @default.
- W3209898210 cites W2208293910 @default.
- W3209898210 cites W2273282978 @default.
- W3209898210 cites W2593192809 @default.
- W3209898210 cites W2730344763 @default.
- W3209898210 cites W2792174069 @default.
- W3209898210 cites W2892289985 @default.
- W3209898210 cites W2896412441 @default.
- W3209898210 cites W2897502064 @default.
- W3209898210 cites W2901033374 @default.
- W3209898210 cites W2911964244 @default.
- W3209898210 cites W2912253559 @default.
- W3209898210 cites W2969089360 @default.
- W3209898210 cites W2971820076 @default.
- W3209898210 cites W2976772718 @default.
- W3209898210 cites W2994329725 @default.
- W3209898210 cites W2999388665 @default.
- W3209898210 cites W3005761411 @default.
- W3209898210 cites W3006899973 @default.
- W3209898210 cites W3007712371 @default.
- W3209898210 cites W3015620192 @default.
- W3209898210 cites W3023830374 @default.
- W3209898210 cites W3045040272 @default.
- W3209898210 cites W3047558733 @default.
- W3209898210 cites W3091948139 @default.
- W3209898210 cites W3129336286 @default.
- W3209898210 cites W3141132941 @default.
- W3209898210 cites W3183485891 @default.
- W3209898210 cites W3194331235 @default.
- W3209898210 doi "https://doi.org/10.1108/febe-09-2021-0044" @default.
- W3209898210 hasPublicationYear "2021" @default.
- W3209898210 type Work @default.
- W3209898210 sameAs 3209898210 @default.
- W3209898210 citedByCount "8" @default.
- W3209898210 countsByYear W32098982102022 @default.
- W3209898210 countsByYear W32098982102023 @default.
- W3209898210 crossrefType "journal-article" @default.
- W3209898210 hasAuthorship W3209898210A5003837104 @default.
- W3209898210 hasAuthorship W3209898210A5044442415 @default.
- W3209898210 hasAuthorship W3209898210A5060374600 @default.
- W3209898210 hasAuthorship W3209898210A5064098467 @default.
- W3209898210 hasAuthorship W3209898210A5067395358 @default.
- W3209898210 hasBestOaLocation W32098982101 @default.
- W3209898210 hasConcept C111919701 @default.
- W3209898210 hasConcept C11413529 @default.
- W3209898210 hasConcept C119857082 @default.
- W3209898210 hasConcept C127413603 @default.
- W3209898210 hasConcept C154945302 @default.
- W3209898210 hasConcept C169258074 @default.
- W3209898210 hasConcept C187320778 @default.
- W3209898210 hasConcept C2385561 @default.
- W3209898210 hasConcept C32834561 @default.
- W3209898210 hasConcept C39432304 @default.
- W3209898210 hasConcept C41008148 @default.
- W3209898210 hasConcept C45942800 @default.
- W3209898210 hasConcept C58471807 @default.
- W3209898210 hasConcept C76177295 @default.
- W3209898210 hasConcept C76886044 @default.
- W3209898210 hasConceptScore W3209898210C111919701 @default.
- W3209898210 hasConceptScore W3209898210C11413529 @default.
- W3209898210 hasConceptScore W3209898210C119857082 @default.
- W3209898210 hasConceptScore W3209898210C127413603 @default.
- W3209898210 hasConceptScore W3209898210C154945302 @default.
- W3209898210 hasConceptScore W3209898210C169258074 @default.
- W3209898210 hasConceptScore W3209898210C187320778 @default.
- W3209898210 hasConceptScore W3209898210C2385561 @default.
- W3209898210 hasConceptScore W3209898210C32834561 @default.
- W3209898210 hasConceptScore W3209898210C39432304 @default.
- W3209898210 hasConceptScore W3209898210C41008148 @default.
- W3209898210 hasConceptScore W3209898210C45942800 @default.
- W3209898210 hasConceptScore W3209898210C58471807 @default.
- W3209898210 hasConceptScore W3209898210C76177295 @default.
- W3209898210 hasConceptScore W3209898210C76886044 @default.
- W3209898210 hasIssue "1" @default.
- W3209898210 hasLocation W32098982101 @default.
- W3209898210 hasOpenAccess W3209898210 @default.
- W3209898210 hasPrimaryLocation W32098982101 @default.
- W3209898210 hasRelatedWork W2052615004 @default.
- W3209898210 hasRelatedWork W3174196512 @default.