Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209901415> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3209901415 abstract "In modern cities, the number of vehicles is increasing day by day, which makes it difficult to find parking spaces during travel and takes a lot of time to drive at a slow speed. This not only causes local traffic chaos but also interferes with the driving efficiency of the entire roads. This phenomenon is a common problem faced by modern metropolitan areas. To reduce the time spent in finding parking spaces, fuel consumption, and carbon dioxide emissions, and to effectively improve overall driving efficiency, the systemization of urban roadside or off-street parking has become a key issue that needs attention and demonstration in so-called “smart” cities. In this paper, we have designed and applied an mm-Wave Radar to detect the presence or absence of available parking spaces, and the parking space data can be quickly uploaded to the cloud. Therefore, the status of the parking space can be updated in real-time. Based on this parking space status data, we build a Long Short-Term Memory (LSTM) model to conduct deep learning. The input data of this model includes parking space location, parking space status, and parking time factors. Using mm-Wave radar experiment with the trained LSTM output provides parking space status prediction which enables drivers to obtain parking space status before they arrive at the destination. This can save half of the drivers' time wasted in finding parking spaces and head to the smart cities." @default.
- W3209901415 created "2021-11-08" @default.
- W3209901415 creator A5017394307 @default.
- W3209901415 creator A5038652102 @default.
- W3209901415 creator A5047310732 @default.
- W3209901415 creator A5054454780 @default.
- W3209901415 creator A5062416994 @default.
- W3209901415 creator A5072549583 @default.
- W3209901415 date "2021-07-23" @default.
- W3209901415 modified "2023-09-23" @default.
- W3209901415 title "Application of Mm-Wave Radar Detection Technology and Artificial Intelligence Learning to Implement the Real-Time and Predictive Design of Parking Spaces" @default.
- W3209901415 cites W1485009520 @default.
- W3209901415 cites W1689711448 @default.
- W3209901415 cites W1940872118 @default.
- W3209901415 cites W1984114931 @default.
- W3209901415 cites W2093063251 @default.
- W3209901415 cites W3108683416 @default.
- W3209901415 doi "https://doi.org/10.1109/ickii51822.2021.9574743" @default.
- W3209901415 hasPublicationYear "2021" @default.
- W3209901415 type Work @default.
- W3209901415 sameAs 3209901415 @default.
- W3209901415 citedByCount "0" @default.
- W3209901415 crossrefType "proceedings-article" @default.
- W3209901415 hasAuthorship W3209901415A5017394307 @default.
- W3209901415 hasAuthorship W3209901415A5038652102 @default.
- W3209901415 hasAuthorship W3209901415A5047310732 @default.
- W3209901415 hasAuthorship W3209901415A5054454780 @default.
- W3209901415 hasAuthorship W3209901415A5062416994 @default.
- W3209901415 hasAuthorship W3209901415A5072549583 @default.
- W3209901415 hasConcept C111919701 @default.
- W3209901415 hasConcept C127413603 @default.
- W3209901415 hasConcept C14353550 @default.
- W3209901415 hasConcept C158739034 @default.
- W3209901415 hasConcept C166957645 @default.
- W3209901415 hasConcept C171146098 @default.
- W3209901415 hasConcept C205649164 @default.
- W3209901415 hasConcept C22212356 @default.
- W3209901415 hasConcept C2778572836 @default.
- W3209901415 hasConcept C2994392017 @default.
- W3209901415 hasConcept C41008148 @default.
- W3209901415 hasConcept C45882903 @default.
- W3209901415 hasConcept C554190296 @default.
- W3209901415 hasConcept C76155785 @default.
- W3209901415 hasConcept C79403827 @default.
- W3209901415 hasConceptScore W3209901415C111919701 @default.
- W3209901415 hasConceptScore W3209901415C127413603 @default.
- W3209901415 hasConceptScore W3209901415C14353550 @default.
- W3209901415 hasConceptScore W3209901415C158739034 @default.
- W3209901415 hasConceptScore W3209901415C166957645 @default.
- W3209901415 hasConceptScore W3209901415C171146098 @default.
- W3209901415 hasConceptScore W3209901415C205649164 @default.
- W3209901415 hasConceptScore W3209901415C22212356 @default.
- W3209901415 hasConceptScore W3209901415C2778572836 @default.
- W3209901415 hasConceptScore W3209901415C2994392017 @default.
- W3209901415 hasConceptScore W3209901415C41008148 @default.
- W3209901415 hasConceptScore W3209901415C45882903 @default.
- W3209901415 hasConceptScore W3209901415C554190296 @default.
- W3209901415 hasConceptScore W3209901415C76155785 @default.
- W3209901415 hasConceptScore W3209901415C79403827 @default.
- W3209901415 hasLocation W32099014151 @default.
- W3209901415 hasOpenAccess W3209901415 @default.
- W3209901415 hasPrimaryLocation W32099014151 @default.
- W3209901415 hasRelatedWork W10351504 @default.
- W3209901415 hasRelatedWork W1181636 @default.
- W3209901415 hasRelatedWork W13649901 @default.
- W3209901415 hasRelatedWork W2560988 @default.
- W3209901415 hasRelatedWork W5324169 @default.
- W3209901415 hasRelatedWork W5771432 @default.
- W3209901415 hasRelatedWork W7492100 @default.
- W3209901415 hasRelatedWork W8652212 @default.
- W3209901415 hasRelatedWork W9093411 @default.
- W3209901415 hasRelatedWork W9210675 @default.
- W3209901415 isParatext "false" @default.
- W3209901415 isRetracted "false" @default.
- W3209901415 magId "3209901415" @default.
- W3209901415 workType "article" @default.