Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209916183> ?p ?o ?g. }
- W3209916183 endingPage "107858" @default.
- W3209916183 startingPage "107858" @default.
- W3209916183 abstract "Machine learning is becoming an integral part of the Design-Build-Test-Learn cycle in biotechnology. Machine learning models learn from collected datasets such as omics data and predict a defined outcome, which has led to both production improvements and predictive tools in the field. Robust prediction of the behavior of microbial cell factories and production processes not only greatly increases our understanding of the function of such systems, but also provides significant savings of development time. However, many pitfalls when modeling biological data - bad fit, noisy data, model instability, low data quantity and imbalances in the data - cause models to suffer in their performance. Here we provide an accessible, in-depth analysis on the problems created by these pitfalls, as well as means of their detection and mediation, with a focus on supervised learning. Assessing the state of the art, we show that, currently, in-depth analyses of model performance are often absent and must be improved. This review provides a toolbox for the analysis of model robustness and performance, and simultaneously proposes a standard for the community to facilitate future work. It is further accompanied by an interactive online tutorial on the discussed issues." @default.
- W3209916183 created "2021-11-08" @default.
- W3209916183 creator A5026523298 @default.
- W3209916183 creator A5028945060 @default.
- W3209916183 creator A5039596012 @default.
- W3209916183 creator A5064877651 @default.
- W3209916183 creator A5075515002 @default.
- W3209916183 date "2021-12-01" @default.
- W3209916183 modified "2023-09-26" @default.
- W3209916183 title "Improving the performance of machine learning models for biotechnology: The quest for deus ex machina" @default.
- W3209916183 cites W1975387345 @default.
- W3209916183 cites W2022828569 @default.
- W3209916183 cites W2034504227 @default.
- W3209916183 cites W2044525257 @default.
- W3209916183 cites W2058501095 @default.
- W3209916183 cites W2061042286 @default.
- W3209916183 cites W2078355959 @default.
- W3209916183 cites W2091198609 @default.
- W3209916183 cites W2096008230 @default.
- W3209916183 cites W2103795997 @default.
- W3209916183 cites W2110118110 @default.
- W3209916183 cites W2125233704 @default.
- W3209916183 cites W2136636278 @default.
- W3209916183 cites W2151554678 @default.
- W3209916183 cites W2153838454 @default.
- W3209916183 cites W2153908768 @default.
- W3209916183 cites W2158469604 @default.
- W3209916183 cites W2166659140 @default.
- W3209916183 cites W2174413005 @default.
- W3209916183 cites W2303048226 @default.
- W3209916183 cites W2346907959 @default.
- W3209916183 cites W2472044128 @default.
- W3209916183 cites W2577168473 @default.
- W3209916183 cites W2582666522 @default.
- W3209916183 cites W2584973635 @default.
- W3209916183 cites W2588481196 @default.
- W3209916183 cites W2591130492 @default.
- W3209916183 cites W2595593998 @default.
- W3209916183 cites W2738034871 @default.
- W3209916183 cites W2750551761 @default.
- W3209916183 cites W2759972659 @default.
- W3209916183 cites W2783788528 @default.
- W3209916183 cites W2784340223 @default.
- W3209916183 cites W2786426577 @default.
- W3209916183 cites W2787894218 @default.
- W3209916183 cites W2791721391 @default.
- W3209916183 cites W2796436295 @default.
- W3209916183 cites W2805310212 @default.
- W3209916183 cites W2806157403 @default.
- W3209916183 cites W2806394571 @default.
- W3209916183 cites W2887479833 @default.
- W3209916183 cites W2901218091 @default.
- W3209916183 cites W2902966040 @default.
- W3209916183 cites W2903357856 @default.
- W3209916183 cites W2903740678 @default.
- W3209916183 cites W2910030584 @default.
- W3209916183 cites W2912721696 @default.
- W3209916183 cites W2917580301 @default.
- W3209916183 cites W2921412988 @default.
- W3209916183 cites W2932347607 @default.
- W3209916183 cites W2935023030 @default.
- W3209916183 cites W2942829220 @default.
- W3209916183 cites W2943995236 @default.
- W3209916183 cites W2945103729 @default.
- W3209916183 cites W2949670700 @default.
- W3209916183 cites W2951203227 @default.
- W3209916183 cites W2953321375 @default.
- W3209916183 cites W2963518130 @default.
- W3209916183 cites W2963907999 @default.
- W3209916183 cites W2972223935 @default.
- W3209916183 cites W2986937238 @default.
- W3209916183 cites W2994115888 @default.
- W3209916183 cites W3019545646 @default.
- W3209916183 cites W3026996309 @default.
- W3209916183 cites W3028645112 @default.
- W3209916183 cites W3040672684 @default.
- W3209916183 cites W3043794400 @default.
- W3209916183 cites W3083314587 @default.
- W3209916183 cites W3088063380 @default.
- W3209916183 cites W3088231826 @default.
- W3209916183 cites W3092728598 @default.
- W3209916183 cites W3093098684 @default.
- W3209916183 cites W3094316663 @default.
- W3209916183 cites W3105098767 @default.
- W3209916183 cites W3105448862 @default.
- W3209916183 cites W3107629351 @default.
- W3209916183 cites W3108628125 @default.
- W3209916183 cites W3131255695 @default.
- W3209916183 doi "https://doi.org/10.1016/j.biotechadv.2021.107858" @default.
- W3209916183 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34695560" @default.
- W3209916183 hasPublicationYear "2021" @default.
- W3209916183 type Work @default.
- W3209916183 sameAs 3209916183 @default.
- W3209916183 citedByCount "5" @default.
- W3209916183 countsByYear W32099161832022 @default.
- W3209916183 countsByYear W32099161832023 @default.
- W3209916183 crossrefType "journal-article" @default.
- W3209916183 hasAuthorship W3209916183A5026523298 @default.