Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209922489> ?p ?o ?g. }
- W3209922489 endingPage "297" @default.
- W3209922489 startingPage "267" @default.
- W3209922489 abstract "Detection of material inhomogeneities is an important task in magnetic imaging and plays a significant role in understanding physical processes. For example, in spintronics, the sample heterogeneity determines the onset of current-driven magnetization motion. While often a significant effort is made in enhancing the resolution of an experimental technique to obtain a deeper insight into the physical properties, here we want to emphasize that an advantageous data analysis has the potential to provide a lot more insight into given data set, in particular when being close to the resolution limit where the noise becomes at least of the same order as the signal. In this work, we introduce two tools - the average latent dimension and average latent entropy - which allow for the detection of very subtle material inhomogeneity patterns in the data. For example, for the Ising model, we show that these tools are able to resolve exchange differences down to $1%$. For a micromagnetic model, we demonstrate that the latent entropy can be used to detect changes in the easy axis anisotropy from magnetization data. We show that the latent entropy remains robust when imposing noise on the data, changing less than $0.3%$ after adding Gaussian noise of the same amplitude as the signal. Furthermore, we demonstrate that these data-driven tools can be used to visualize inhomogeneities based on MOKE data of magnetic whirls and thereby can help to explicitly resolve impurities and pinning centers. To evaluate the performance of the average latent dimension and entropy, we show that they outperform common instruments ranging from standard statistics measures to state-of-the-art data analysis techniques such as Gaussian mixture models not only in recognition quality but also in the required computational cost." @default.
- W3209922489 created "2021-11-08" @default.
- W3209922489 creator A5015653877 @default.
- W3209922489 creator A5054406406 @default.
- W3209922489 creator A5078069634 @default.
- W3209922489 creator A5088102530 @default.
- W3209922489 date "2021-11-02" @default.
- W3209922489 modified "2023-09-24" @default.
- W3209922489 title "Scalable computational measures for entropic detection of latent relations and their applications to magnetic imaging" @default.
- W3209922489 cites W1619452145 @default.
- W3209922489 cites W1965245884 @default.
- W3209922489 cites W1968371014 @default.
- W3209922489 cites W1969200114 @default.
- W3209922489 cites W1971309419 @default.
- W3209922489 cites W1972081918 @default.
- W3209922489 cites W1976198442 @default.
- W3209922489 cites W1981443800 @default.
- W3209922489 cites W1983816564 @default.
- W3209922489 cites W1991395163 @default.
- W3209922489 cites W1993979613 @default.
- W3209922489 cites W1996418689 @default.
- W3209922489 cites W1997093580 @default.
- W3209922489 cites W1997406853 @default.
- W3209922489 cites W1999529149 @default.
- W3209922489 cites W2005818570 @default.
- W3209922489 cites W2006445814 @default.
- W3209922489 cites W2008494215 @default.
- W3209922489 cites W2008794196 @default.
- W3209922489 cites W2009768419 @default.
- W3209922489 cites W2010501464 @default.
- W3209922489 cites W2020247269 @default.
- W3209922489 cites W2021912944 @default.
- W3209922489 cites W2023883372 @default.
- W3209922489 cites W2030468762 @default.
- W3209922489 cites W2032558547 @default.
- W3209922489 cites W2034258734 @default.
- W3209922489 cites W2038320523 @default.
- W3209922489 cites W2039780806 @default.
- W3209922489 cites W2060457947 @default.
- W3209922489 cites W2066474375 @default.
- W3209922489 cites W2081976812 @default.
- W3209922489 cites W2085537232 @default.
- W3209922489 cites W2094325813 @default.
- W3209922489 cites W2103669939 @default.
- W3209922489 cites W2107971449 @default.
- W3209922489 cites W2114318022 @default.
- W3209922489 cites W2134731454 @default.
- W3209922489 cites W2138009773 @default.
- W3209922489 cites W2142805504 @default.
- W3209922489 cites W2146842127 @default.
- W3209922489 cites W2147238273 @default.
- W3209922489 cites W2160372845 @default.
- W3209922489 cites W2170595610 @default.
- W3209922489 cites W2172275395 @default.
- W3209922489 cites W2255421852 @default.
- W3209922489 cites W2335301680 @default.
- W3209922489 cites W2338940958 @default.
- W3209922489 cites W2516074632 @default.
- W3209922489 cites W2540560446 @default.
- W3209922489 cites W2581183332 @default.
- W3209922489 cites W2606287176 @default.
- W3209922489 cites W2761982224 @default.
- W3209922489 cites W2804564056 @default.
- W3209922489 cites W2908267189 @default.
- W3209922489 cites W2937056002 @default.
- W3209922489 cites W2963900878 @default.
- W3209922489 cites W2977740077 @default.
- W3209922489 cites W3001215892 @default.
- W3209922489 cites W3037308856 @default.
- W3209922489 cites W3101182205 @default.
- W3209922489 cites W3102549634 @default.
- W3209922489 cites W3103699933 @default.
- W3209922489 cites W3104826484 @default.
- W3209922489 cites W3105517429 @default.
- W3209922489 cites W3125665875 @default.
- W3209922489 cites W4213009331 @default.
- W3209922489 cites W4233135949 @default.
- W3209922489 cites W4252028749 @default.
- W3209922489 cites W4256008865 @default.
- W3209922489 cites W4256736608 @default.
- W3209922489 doi "https://doi.org/10.2140/camcos.2021.16.267" @default.
- W3209922489 hasPublicationYear "2021" @default.
- W3209922489 type Work @default.
- W3209922489 sameAs 3209922489 @default.
- W3209922489 citedByCount "1" @default.
- W3209922489 countsByYear W32099224892022 @default.
- W3209922489 crossrefType "journal-article" @default.
- W3209922489 hasAuthorship W3209922489A5015653877 @default.
- W3209922489 hasAuthorship W3209922489A5054406406 @default.
- W3209922489 hasAuthorship W3209922489A5078069634 @default.
- W3209922489 hasAuthorship W3209922489A5088102530 @default.
- W3209922489 hasBestOaLocation W32099224892 @default.
- W3209922489 hasConcept C106301342 @default.
- W3209922489 hasConcept C11413529 @default.
- W3209922489 hasConcept C120665830 @default.
- W3209922489 hasConcept C121332964 @default.
- W3209922489 hasConcept C121864883 @default.
- W3209922489 hasConcept C153180895 @default.