Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209949477> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W3209949477 abstract "Along with the development of technology as well as the explosion in digital data in the era of fourth industrial revolution, cyberattacks using ransomware are emerging as a serious threat to many agencies and organizations. The harm of ransomware is not limited to the areas of information technology and finance but also affects areas related to people's lives, such as the medical field. Therefore, research to identify and detect these types of malicious code is urgent. this paper present a novel approach of identifying and classifying ransomware based on dynamic analysis techniques combined with the use of machine learning algorithms. First, this research focused on the Application programming interface (API) call functions that are extracted during a dynamic analysis of executable samples using the Cuckoo sandbox. Second, research used LightGBM, a gradient boosting decision tree algorithm, for training and then detecting and classifying normal software and eight different types of ransomware. Experimental results showed that the proposed approach achieves an overall accuracy rate of 98.7% when performing multiclass classification. In particular, the detection rates of ransomware and normalware were both 99.9%. At the same time, the accuracy in identifying two specific types of ransomware, WannaCry and Win32:FileCoder, reached 100%." @default.
- W3209949477 created "2021-11-08" @default.
- W3209949477 creator A5008815701 @default.
- W3209949477 creator A5051322453 @default.
- W3209949477 date "2021-01-01" @default.
- W3209949477 modified "2023-09-25" @default.
- W3209949477 title "LightGBM-based Ransomware Detection using API Call Sequences" @default.
- W3209949477 cites W172558989 @default.
- W3209949477 cites W2115328185 @default.
- W3209949477 cites W2928980918 @default.
- W3209949477 cites W2962912862 @default.
- W3209949477 cites W3099702369 @default.
- W3209949477 doi "https://doi.org/10.14569/ijacsa.2021.0121016" @default.
- W3209949477 hasPublicationYear "2021" @default.
- W3209949477 type Work @default.
- W3209949477 sameAs 3209949477 @default.
- W3209949477 citedByCount "2" @default.
- W3209949477 countsByYear W32099494772023 @default.
- W3209949477 crossrefType "journal-article" @default.
- W3209949477 hasAuthorship W3209949477A5008815701 @default.
- W3209949477 hasAuthorship W3209949477A5051322453 @default.
- W3209949477 hasBestOaLocation W32099494771 @default.
- W3209949477 hasConcept C154945302 @default.
- W3209949477 hasConcept C2777667771 @default.
- W3209949477 hasConcept C38652104 @default.
- W3209949477 hasConcept C41008148 @default.
- W3209949477 hasConcept C541664917 @default.
- W3209949477 hasConceptScore W3209949477C154945302 @default.
- W3209949477 hasConceptScore W3209949477C2777667771 @default.
- W3209949477 hasConceptScore W3209949477C38652104 @default.
- W3209949477 hasConceptScore W3209949477C41008148 @default.
- W3209949477 hasConceptScore W3209949477C541664917 @default.
- W3209949477 hasIssue "10" @default.
- W3209949477 hasLocation W32099494771 @default.
- W3209949477 hasOpenAccess W3209949477 @default.
- W3209949477 hasPrimaryLocation W32099494771 @default.
- W3209949477 hasRelatedWork W2990396213 @default.
- W3209949477 hasRelatedWork W3020435471 @default.
- W3209949477 hasRelatedWork W3160425865 @default.
- W3209949477 hasRelatedWork W3170525725 @default.
- W3209949477 hasRelatedWork W3211746486 @default.
- W3209949477 hasRelatedWork W4206698438 @default.
- W3209949477 hasRelatedWork W4210579926 @default.
- W3209949477 hasRelatedWork W4226116154 @default.
- W3209949477 hasRelatedWork W4240330722 @default.
- W3209949477 hasRelatedWork W4297496397 @default.
- W3209949477 hasVolume "12" @default.
- W3209949477 isParatext "false" @default.
- W3209949477 isRetracted "false" @default.
- W3209949477 magId "3209949477" @default.
- W3209949477 workType "article" @default.