Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209964525> ?p ?o ?g. }
- W3209964525 endingPage "025009" @default.
- W3209964525 startingPage "025009" @default.
- W3209964525 abstract "Abstract Nickel-based superalloys have a wide range of applications in high temperature and stress domains due to their unique mechanical properties. Under mechanical loading at high temperatures, rafting occurs, which reduces the service life of these materials. Rafting is heavily affected by the loading conditions associated with plastic strain; therefore, understanding plastic strain evolution can help understand these material’s service life. This research classifies nickel-based superalloys with respect to creep strain with deep learning techniques, a technique that eliminates the need for manual feature extraction of complex microstructures. Phase-field simulation data that displayed similar results to experiments were used to build a model with pre-trained neural networks with several convolutional neural network architectures and hyper-parameters. The optimized hyper-parameters were transferred to scanning electron microscopy images of nickel-based superalloys to build a new model. This fine-tuning process helped mitigate the effect of a small experimental dataset. The built models achieved a classification accuracy of 97.74% on phase-field data and 100% accuracy on experimental data after fine-tuning." @default.
- W3209964525 created "2021-11-08" @default.
- W3209964525 creator A5010745045 @default.
- W3209964525 creator A5020652489 @default.
- W3209964525 creator A5022401244 @default.
- W3209964525 creator A5029828791 @default.
- W3209964525 creator A5030239134 @default.
- W3209964525 creator A5053051883 @default.
- W3209964525 date "2022-01-05" @default.
- W3209964525 modified "2023-09-27" @default.
- W3209964525 title "Microstructure property classification of nickel-based superalloys using deep learning" @default.
- W3209964525 cites W1141054642 @default.
- W3209964525 cites W1967502861 @default.
- W3209964525 cites W1996693313 @default.
- W3209964525 cites W2017119305 @default.
- W3209964525 cites W2081733098 @default.
- W3209964525 cites W2108598243 @default.
- W3209964525 cites W2112796928 @default.
- W3209964525 cites W2116386142 @default.
- W3209964525 cites W2154987621 @default.
- W3209964525 cites W2462290730 @default.
- W3209964525 cites W2533992023 @default.
- W3209964525 cites W2561048364 @default.
- W3209964525 cites W2618530766 @default.
- W3209964525 cites W2754253995 @default.
- W3209964525 cites W2809254203 @default.
- W3209964525 cites W2885148471 @default.
- W3209964525 cites W2902390267 @default.
- W3209964525 cites W2908735595 @default.
- W3209964525 cites W2919115771 @default.
- W3209964525 cites W2940580526 @default.
- W3209964525 cites W2944668789 @default.
- W3209964525 cites W2947037019 @default.
- W3209964525 cites W2954996726 @default.
- W3209964525 cites W2958882319 @default.
- W3209964525 cites W2964054038 @default.
- W3209964525 cites W2968923792 @default.
- W3209964525 cites W2974092215 @default.
- W3209964525 cites W2999366445 @default.
- W3209964525 cites W2999462523 @default.
- W3209964525 cites W3000379732 @default.
- W3209964525 cites W3006436762 @default.
- W3209964525 cites W3025905111 @default.
- W3209964525 cites W3026301381 @default.
- W3209964525 cites W3081899737 @default.
- W3209964525 cites W3099859964 @default.
- W3209964525 cites W3107921449 @default.
- W3209964525 cites W3133856960 @default.
- W3209964525 cites W3134223248 @default.
- W3209964525 cites W3158146849 @default.
- W3209964525 cites W4297888515 @default.
- W3209964525 doi "https://doi.org/10.1088/1361-651x/ac3217" @default.
- W3209964525 hasPublicationYear "2022" @default.
- W3209964525 type Work @default.
- W3209964525 sameAs 3209964525 @default.
- W3209964525 citedByCount "1" @default.
- W3209964525 countsByYear W32099645252023 @default.
- W3209964525 crossrefType "journal-article" @default.
- W3209964525 hasAuthorship W3209964525A5010745045 @default.
- W3209964525 hasAuthorship W3209964525A5020652489 @default.
- W3209964525 hasAuthorship W3209964525A5022401244 @default.
- W3209964525 hasAuthorship W3209964525A5029828791 @default.
- W3209964525 hasAuthorship W3209964525A5030239134 @default.
- W3209964525 hasAuthorship W3209964525A5053051883 @default.
- W3209964525 hasBestOaLocation W32099645251 @default.
- W3209964525 hasConcept C108583219 @default.
- W3209964525 hasConcept C154945302 @default.
- W3209964525 hasConcept C159985019 @default.
- W3209964525 hasConcept C191897082 @default.
- W3209964525 hasConcept C192562407 @default.
- W3209964525 hasConcept C207055975 @default.
- W3209964525 hasConcept C41008148 @default.
- W3209964525 hasConcept C504270822 @default.
- W3209964525 hasConcept C50644808 @default.
- W3209964525 hasConcept C81363708 @default.
- W3209964525 hasConcept C87976508 @default.
- W3209964525 hasConceptScore W3209964525C108583219 @default.
- W3209964525 hasConceptScore W3209964525C154945302 @default.
- W3209964525 hasConceptScore W3209964525C159985019 @default.
- W3209964525 hasConceptScore W3209964525C191897082 @default.
- W3209964525 hasConceptScore W3209964525C192562407 @default.
- W3209964525 hasConceptScore W3209964525C207055975 @default.
- W3209964525 hasConceptScore W3209964525C41008148 @default.
- W3209964525 hasConceptScore W3209964525C504270822 @default.
- W3209964525 hasConceptScore W3209964525C50644808 @default.
- W3209964525 hasConceptScore W3209964525C81363708 @default.
- W3209964525 hasConceptScore W3209964525C87976508 @default.
- W3209964525 hasIssue "2" @default.
- W3209964525 hasLocation W32099645251 @default.
- W3209964525 hasLocation W32099645252 @default.
- W3209964525 hasOpenAccess W3209964525 @default.
- W3209964525 hasPrimaryLocation W32099645251 @default.
- W3209964525 hasRelatedWork W2006022085 @default.
- W3209964525 hasRelatedWork W2020660716 @default.
- W3209964525 hasRelatedWork W2058945371 @default.
- W3209964525 hasRelatedWork W2351679394 @default.
- W3209964525 hasRelatedWork W2731899572 @default.
- W3209964525 hasRelatedWork W3018833990 @default.