Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210046773> ?p ?o ?g. }
- W3210046773 abstract "Suction is widely used by animals for strong controllable underwater adhesion but is less well understood than adhesion of terrestrial climbing animals. Here we investigate the attachment of aquatic insect larvae (Blephariceridae), which cling to rocks in torrential streams using the only known muscle-actuated suction organs in insects. We measured their attachment forces on well-defined rough substrates and found that their adhesion was less reduced by micro-roughness than that of terrestrial climbing insects. In vivo visualisation of the suction organs in contact with microstructured substrates revealed that they can mould around large asperities to form a seal. We have shown that the ventral surface of the suction disc is covered by dense arrays of microtrichia, which are stiff spine-like cuticular structures that only make tip contact. Our results demonstrate the impressive performance and versatility of blepharicerid suction organs and highlight their potential as a study system to explore biological suction mechanisms.Suction cups are widely used to attach objects to surfaces in bathrooms and kitchens. They work well on tiles and other smooth surfaces, but do not stick well to rougher materials like brick or wood because they are unable to form an air-tight seal. Researchers have been searching for ways to improve these cups by studying how octopuses, remora fish and other sea animals use muscle-powered suction organs to stick to wet and rough surfaces. However, the experiments needed to understand the detailed mechanics of suction organs are difficult to perform on living specimens of these animals. The aquatic larvae of a family of insects known as the net-winged midges also have suction organs that are powered by muscles. These insects survive in fast flowing mountain streams where they use their suction organs to stick to rocks underwater. However, it remained unclear how these suction organs work. Here, Kang et al. found that net-winged midge larvae attach extremely well to a variety of surfaces. The larvae were able to withstand forces over one thousand times their body weight when attached to smooth surfaces. Even on rough materials, where human-made suction cups attach poorly, the larvae were able to withstand forces up to 240-times their body weight. Further experiments using several microscopy approaches revealed that the suction organs of the larvae are covered in multiple spine-like structures called microtrichia that interlock with bumps and dips on a surface to help the organ remain in place. Similar structures have previously been found on the suction organs of remora fish, but are not as tightly packed together. These findings demonstrate that net-winged midge larvae may be useful model systems to study how natural suction organs operate. Furthermore, they provide a new source of inspiration for scientists and engineers to design and manufacture suction cups capable of attaching to a wider variety of surfaces." @default.
- W3210046773 created "2021-11-08" @default.
- W3210046773 creator A5016178090 @default.
- W3210046773 creator A5016920016 @default.
- W3210046773 creator A5018364244 @default.
- W3210046773 creator A5057261058 @default.
- W3210046773 date "2021-11-03" @default.
- W3210046773 modified "2023-10-18" @default.
- W3210046773 title "Extreme suction attachment performance from specialised insects living in mountain streams (Diptera: Blephariceridae)" @default.
- W3210046773 cites W1981107152 @default.
- W3210046773 cites W1990093482 @default.
- W3210046773 cites W1995778514 @default.
- W3210046773 cites W1996589787 @default.
- W3210046773 cites W2008861638 @default.
- W3210046773 cites W2022682254 @default.
- W3210046773 cites W2034635690 @default.
- W3210046773 cites W2036934325 @default.
- W3210046773 cites W2039761457 @default.
- W3210046773 cites W2043069661 @default.
- W3210046773 cites W2057264572 @default.
- W3210046773 cites W2074065980 @default.
- W3210046773 cites W2098624244 @default.
- W3210046773 cites W2100453107 @default.
- W3210046773 cites W2102058041 @default.
- W3210046773 cites W2108844777 @default.
- W3210046773 cites W2114509435 @default.
- W3210046773 cites W2114938190 @default.
- W3210046773 cites W2118367782 @default.
- W3210046773 cites W2126636026 @default.
- W3210046773 cites W2131945542 @default.
- W3210046773 cites W2136544884 @default.
- W3210046773 cites W2139677735 @default.
- W3210046773 cites W2157049451 @default.
- W3210046773 cites W2160756425 @default.
- W3210046773 cites W2167279371 @default.
- W3210046773 cites W2168778191 @default.
- W3210046773 cites W2177646235 @default.
- W3210046773 cites W2181839113 @default.
- W3210046773 cites W2185619721 @default.
- W3210046773 cites W2303222396 @default.
- W3210046773 cites W2305678122 @default.
- W3210046773 cites W2310491422 @default.
- W3210046773 cites W2315736380 @default.
- W3210046773 cites W2341936566 @default.
- W3210046773 cites W2497620507 @default.
- W3210046773 cites W2560721490 @default.
- W3210046773 cites W2755569859 @default.
- W3210046773 cites W2759820149 @default.
- W3210046773 cites W2792106628 @default.
- W3210046773 cites W2889153453 @default.
- W3210046773 cites W2910487793 @default.
- W3210046773 cites W2954320265 @default.
- W3210046773 cites W2965465245 @default.
- W3210046773 cites W2971329443 @default.
- W3210046773 cites W2972586300 @default.
- W3210046773 cites W2982585121 @default.
- W3210046773 cites W3033561239 @default.
- W3210046773 cites W3042372812 @default.
- W3210046773 cites W3091923155 @default.
- W3210046773 cites W4244507131 @default.
- W3210046773 doi "https://doi.org/10.7554/elife.63250" @default.
- W3210046773 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8565926" @default.
- W3210046773 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34731079" @default.
- W3210046773 hasPublicationYear "2021" @default.
- W3210046773 type Work @default.
- W3210046773 sameAs 3210046773 @default.
- W3210046773 citedByCount "7" @default.
- W3210046773 countsByYear W32100467732022 @default.
- W3210046773 countsByYear W32100467732023 @default.
- W3210046773 crossrefType "journal-article" @default.
- W3210046773 hasAuthorship W3210046773A5016178090 @default.
- W3210046773 hasAuthorship W3210046773A5016920016 @default.
- W3210046773 hasAuthorship W3210046773A5018364244 @default.
- W3210046773 hasAuthorship W3210046773A5057261058 @default.
- W3210046773 hasBestOaLocation W32100467731 @default.
- W3210046773 hasConcept C105702510 @default.
- W3210046773 hasConcept C107365816 @default.
- W3210046773 hasConcept C127313418 @default.
- W3210046773 hasConcept C127413603 @default.
- W3210046773 hasConcept C159985019 @default.
- W3210046773 hasConcept C166957645 @default.
- W3210046773 hasConcept C18903297 @default.
- W3210046773 hasConcept C192562407 @default.
- W3210046773 hasConcept C23795335 @default.
- W3210046773 hasConcept C2777755289 @default.
- W3210046773 hasConcept C505870484 @default.
- W3210046773 hasConcept C71039073 @default.
- W3210046773 hasConcept C78519656 @default.
- W3210046773 hasConcept C84416704 @default.
- W3210046773 hasConcept C86803240 @default.
- W3210046773 hasConcept C87321777 @default.
- W3210046773 hasConcept C95038775 @default.
- W3210046773 hasConcept C95457728 @default.
- W3210046773 hasConceptScore W3210046773C105702510 @default.
- W3210046773 hasConceptScore W3210046773C107365816 @default.
- W3210046773 hasConceptScore W3210046773C127313418 @default.
- W3210046773 hasConceptScore W3210046773C127413603 @default.
- W3210046773 hasConceptScore W3210046773C159985019 @default.
- W3210046773 hasConceptScore W3210046773C166957645 @default.
- W3210046773 hasConceptScore W3210046773C18903297 @default.