Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210047487> ?p ?o ?g. }
- W3210047487 endingPage "109751" @default.
- W3210047487 startingPage "109751" @default.
- W3210047487 abstract "The pore structures of shallow and mid-deep carbonate gas reservoirs have been well explored. Totally different from these reservoirs, however, the pore structure of a target ultra-deep carbonate gas reservoir, the Qixia Reservoir in the Shuangyushi play is still unknown. Affected by tectonic movement and deep hydrothermal transformation, the lithology of this target reservoir has significantly changed and it has developed different scales of pores and fractures. Thus, a multiscale micro-CT (computed tomography) method is needed to combine different scales of its pore space to evaluate carbonate samples more realistically. In this study, the multiscale micro-CT method and other traditional methods including X-ray diffraction (XRD), casting thin section, scanning electron microscope (SEM), routine petrophysical measurements (RPM), and high-pressure mercury intrusion (HPMI) are first combined to quantitatively describe a distribution of multi-scale pores, throats, and fractures in the target ultra-deep carbonate gas reservoir. The results showed that micro pores (70%–90%), micro throats (>90%), and micro fractures (>90%) dominated in this reservoir. Dolomite accounted for more than 90% of the rock mineral composition in the Qixia reservoir with few clay minerals. Intercrystalline pores and micro fractures were the main pore types and the mean reservoir porosity was less than 2%. Micro fractures play a great role in improving reservoir permeability. The HPMI method presented with errors in the classification of ultra-deep carbonate reservoir types owing to the development of vugs, large pores, and fractures. In this study, a new classification method was proposed to classify this type of reservoirs based on porosity, permeability, and the studied parameters from the multiscale micro-CT method such as throat number and connected porosity proportion. The target reservoir was divided into the following four categories according to the new classification method: fracture macropore type (FMA), macropore type (MA), fracture micropore type (FMI), and micropore type (MI). According to the results of multiscale CT scanning, a strong linear relationship was observed between the number of throats, the connected porosity, and the permeability of the ultra-deep carbonate rock samples studied. Fractures improved the permeability of rock samples by aiding the connection of isolated pores and the expansion of the number of throats. Therefore, the MA and MI types of reservoirs should be properly fractured to increase their productivity." @default.
- W3210047487 created "2021-11-08" @default.
- W3210047487 creator A5014942240 @default.
- W3210047487 creator A5016092761 @default.
- W3210047487 creator A5019954912 @default.
- W3210047487 creator A5025903542 @default.
- W3210047487 creator A5037681457 @default.
- W3210047487 creator A5058576876 @default.
- W3210047487 creator A5077670465 @default.
- W3210047487 creator A5083753074 @default.
- W3210047487 creator A5086480330 @default.
- W3210047487 creator A5088888083 @default.
- W3210047487 date "2022-01-01" @default.
- W3210047487 modified "2023-10-16" @default.
- W3210047487 title "Multiscale pore structure characterization of an ultra-deep carbonate gas reservoir" @default.
- W3210047487 cites W1988730566 @default.
- W3210047487 cites W2007021286 @default.
- W3210047487 cites W2026316104 @default.
- W3210047487 cites W2029434326 @default.
- W3210047487 cites W2029990466 @default.
- W3210047487 cites W2041310394 @default.
- W3210047487 cites W2056915518 @default.
- W3210047487 cites W2067623776 @default.
- W3210047487 cites W2086368662 @default.
- W3210047487 cites W2278652762 @default.
- W3210047487 cites W2297015223 @default.
- W3210047487 cites W2319603211 @default.
- W3210047487 cites W2465380960 @default.
- W3210047487 cites W2735661315 @default.
- W3210047487 cites W2735960782 @default.
- W3210047487 cites W2793654568 @default.
- W3210047487 cites W2793922815 @default.
- W3210047487 cites W2886082917 @default.
- W3210047487 cites W2887918664 @default.
- W3210047487 cites W2968003746 @default.
- W3210047487 cites W2972665588 @default.
- W3210047487 cites W3016207130 @default.
- W3210047487 cites W3037036355 @default.
- W3210047487 cites W3048568153 @default.
- W3210047487 cites W3136159743 @default.
- W3210047487 cites W3166612821 @default.
- W3210047487 cites W3191360454 @default.
- W3210047487 doi "https://doi.org/10.1016/j.petrol.2021.109751" @default.
- W3210047487 hasPublicationYear "2022" @default.
- W3210047487 type Work @default.
- W3210047487 sameAs 3210047487 @default.
- W3210047487 citedByCount "11" @default.
- W3210047487 countsByYear W32100474872022 @default.
- W3210047487 countsByYear W32100474872023 @default.
- W3210047487 crossrefType "journal-article" @default.
- W3210047487 hasAuthorship W3210047487A5014942240 @default.
- W3210047487 hasAuthorship W3210047487A5016092761 @default.
- W3210047487 hasAuthorship W3210047487A5019954912 @default.
- W3210047487 hasAuthorship W3210047487A5025903542 @default.
- W3210047487 hasAuthorship W3210047487A5037681457 @default.
- W3210047487 hasAuthorship W3210047487A5058576876 @default.
- W3210047487 hasAuthorship W3210047487A5077670465 @default.
- W3210047487 hasAuthorship W3210047487A5083753074 @default.
- W3210047487 hasAuthorship W3210047487A5086480330 @default.
- W3210047487 hasAuthorship W3210047487A5088888083 @default.
- W3210047487 hasConcept C120882062 @default.
- W3210047487 hasConcept C122792734 @default.
- W3210047487 hasConcept C123677613 @default.
- W3210047487 hasConcept C127313418 @default.
- W3210047487 hasConcept C17409809 @default.
- W3210047487 hasConcept C185592680 @default.
- W3210047487 hasConcept C187320778 @default.
- W3210047487 hasConcept C191897082 @default.
- W3210047487 hasConcept C192562407 @default.
- W3210047487 hasConcept C19320362 @default.
- W3210047487 hasConcept C199289684 @default.
- W3210047487 hasConcept C2777447996 @default.
- W3210047487 hasConcept C2779096232 @default.
- W3210047487 hasConcept C2780181037 @default.
- W3210047487 hasConcept C2780659211 @default.
- W3210047487 hasConcept C41625074 @default.
- W3210047487 hasConcept C46293882 @default.
- W3210047487 hasConcept C55493867 @default.
- W3210047487 hasConcept C5900021 @default.
- W3210047487 hasConcept C6494504 @default.
- W3210047487 hasConcept C6648577 @default.
- W3210047487 hasConcept C78762247 @default.
- W3210047487 hasConceptScore W3210047487C120882062 @default.
- W3210047487 hasConceptScore W3210047487C122792734 @default.
- W3210047487 hasConceptScore W3210047487C123677613 @default.
- W3210047487 hasConceptScore W3210047487C127313418 @default.
- W3210047487 hasConceptScore W3210047487C17409809 @default.
- W3210047487 hasConceptScore W3210047487C185592680 @default.
- W3210047487 hasConceptScore W3210047487C187320778 @default.
- W3210047487 hasConceptScore W3210047487C191897082 @default.
- W3210047487 hasConceptScore W3210047487C192562407 @default.
- W3210047487 hasConceptScore W3210047487C19320362 @default.
- W3210047487 hasConceptScore W3210047487C199289684 @default.
- W3210047487 hasConceptScore W3210047487C2777447996 @default.
- W3210047487 hasConceptScore W3210047487C2779096232 @default.
- W3210047487 hasConceptScore W3210047487C2780181037 @default.
- W3210047487 hasConceptScore W3210047487C2780659211 @default.
- W3210047487 hasConceptScore W3210047487C41625074 @default.