Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210071639> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3210071639 endingPage "304" @default.
- W3210071639 startingPage "293" @default.
- W3210071639 abstract "The last decade or two has witnessed a boom of images. With the increasing ubiquity of cameras and with the advent of selfies, the number of facial images available in the world has skyrocketed. Consequently, there has been a growing interest in automatic age and gender prediction of a person using facial images. We in this paper focus on this challenging problem. Specifically, this paper focuses on age estimation, age classification and gender classification from still facial images of an individual. We train different models for each problem and we also draw comparisons between building a custom CNN (Convolutional Neural Network) architecture and using various CNN architectures as feature extractors, namely VGG16 pre-trained on VGGFace, Res-Net50 and SE-ResNet50 pre-trained on VGGFace2 dataset and training over those extracted features. We also provide baseline performance of various machine learning algorithms on the feature extraction which gave us the best results. It was observed that even simple linear regression trained on such extracted features outperformed training CNN, ResNet50 and ResNeXt50 from scratch for age estimation." @default.
- W3210071639 created "2021-11-08" @default.
- W3210071639 creator A5021246219 @default.
- W3210071639 creator A5086186405 @default.
- W3210071639 creator A5086686595 @default.
- W3210071639 date "2021-01-01" @default.
- W3210071639 modified "2023-10-14" @default.
- W3210071639 title "Age and Gender Prediction Using Deep CNNs and Transfer Learning" @default.
- W3210071639 cites W1971970117 @default.
- W3210071639 cites W1972960842 @default.
- W3210071639 cites W2036565334 @default.
- W3210071639 cites W2112796928 @default.
- W3210071639 cites W2164598857 @default.
- W3210071639 cites W2325939864 @default.
- W3210071639 cites W2506056259 @default.
- W3210071639 cites W2807323414 @default.
- W3210071639 cites W2963839617 @default.
- W3210071639 cites W2989095606 @default.
- W3210071639 cites W3027320938 @default.
- W3210071639 doi "https://doi.org/10.1007/978-981-16-1092-9_25" @default.
- W3210071639 hasPublicationYear "2021" @default.
- W3210071639 type Work @default.
- W3210071639 sameAs 3210071639 @default.
- W3210071639 citedByCount "4" @default.
- W3210071639 countsByYear W32100716392022 @default.
- W3210071639 countsByYear W32100716392023 @default.
- W3210071639 crossrefType "book-chapter" @default.
- W3210071639 hasAuthorship W3210071639A5021246219 @default.
- W3210071639 hasAuthorship W3210071639A5086186405 @default.
- W3210071639 hasAuthorship W3210071639A5086686595 @default.
- W3210071639 hasBestOaLocation W32100716392 @default.
- W3210071639 hasConcept C108583219 @default.
- W3210071639 hasConcept C119857082 @default.
- W3210071639 hasConcept C120665830 @default.
- W3210071639 hasConcept C121332964 @default.
- W3210071639 hasConcept C138885662 @default.
- W3210071639 hasConcept C144024400 @default.
- W3210071639 hasConcept C150899416 @default.
- W3210071639 hasConcept C153180895 @default.
- W3210071639 hasConcept C154945302 @default.
- W3210071639 hasConcept C192209626 @default.
- W3210071639 hasConcept C2776401178 @default.
- W3210071639 hasConcept C2779304628 @default.
- W3210071639 hasConcept C36289849 @default.
- W3210071639 hasConcept C41008148 @default.
- W3210071639 hasConcept C41895202 @default.
- W3210071639 hasConcept C52622490 @default.
- W3210071639 hasConcept C81363708 @default.
- W3210071639 hasConceptScore W3210071639C108583219 @default.
- W3210071639 hasConceptScore W3210071639C119857082 @default.
- W3210071639 hasConceptScore W3210071639C120665830 @default.
- W3210071639 hasConceptScore W3210071639C121332964 @default.
- W3210071639 hasConceptScore W3210071639C138885662 @default.
- W3210071639 hasConceptScore W3210071639C144024400 @default.
- W3210071639 hasConceptScore W3210071639C150899416 @default.
- W3210071639 hasConceptScore W3210071639C153180895 @default.
- W3210071639 hasConceptScore W3210071639C154945302 @default.
- W3210071639 hasConceptScore W3210071639C192209626 @default.
- W3210071639 hasConceptScore W3210071639C2776401178 @default.
- W3210071639 hasConceptScore W3210071639C2779304628 @default.
- W3210071639 hasConceptScore W3210071639C36289849 @default.
- W3210071639 hasConceptScore W3210071639C41008148 @default.
- W3210071639 hasConceptScore W3210071639C41895202 @default.
- W3210071639 hasConceptScore W3210071639C52622490 @default.
- W3210071639 hasConceptScore W3210071639C81363708 @default.
- W3210071639 hasLocation W32100716391 @default.
- W3210071639 hasLocation W32100716392 @default.
- W3210071639 hasOpenAccess W3210071639 @default.
- W3210071639 hasPrimaryLocation W32100716391 @default.
- W3210071639 hasRelatedWork W2732542196 @default.
- W3210071639 hasRelatedWork W2738221750 @default.
- W3210071639 hasRelatedWork W2800691917 @default.
- W3210071639 hasRelatedWork W2946016983 @default.
- W3210071639 hasRelatedWork W3018421652 @default.
- W3210071639 hasRelatedWork W3091976719 @default.
- W3210071639 hasRelatedWork W3156786002 @default.
- W3210071639 hasRelatedWork W3166467183 @default.
- W3210071639 hasRelatedWork W3192840557 @default.
- W3210071639 hasRelatedWork W4366224123 @default.
- W3210071639 isParatext "false" @default.
- W3210071639 isRetracted "false" @default.
- W3210071639 magId "3210071639" @default.
- W3210071639 workType "book-chapter" @default.