Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210074257> ?p ?o ?g. }
- W3210074257 endingPage "4297" @default.
- W3210074257 startingPage "4297" @default.
- W3210074257 abstract "Aerial-photo interpreted inventories of forest resources, including tree species composition, are valuable in forest resource management, but are expensive to create and can be relatively inaccurate. Because of differences among tree species in their spectral properties and seasonal phenologies, it might be possible to improve such forest resource inventory information (FRI) by using it in concert with multispectral satellite information from multiple time periods. We used Sentinel-2 information from nine spectral bands and 12 dates within a two-year period to model multivariate percent tree species composition in >51,000 forest stands in the FRI of south-central Ontario, Canada. Accuracy of random forest (RF) and convolutional neural network (CNN) predictions were tested using species-specific basal area information from 155 0.25-ha field plots. Additionally, we created models using the Sentinel-2 information in concert with the field data and compared the accuracy of these models and the FRI-based models by use of basal areas from a second (13.7-ha) field data set. Based on average R2 values across species in the two field data sets, the Sentinel-FRI models outperformed the FRI, showing 1.5- and 1.7-fold improvements relative to the FRI for RF and 2.1- and 2.2-fold improvements for CNN (mean R2: 0.141–0.169 (FRI); 0.217–0.295 (RF); 0.307–0.352 (CNN)). Models created with the field data performed even better: improvements relative to the FRI were 2.1-fold for RF and 2.8-fold for CNN (mean R2: 0.169 (FRI); 0.356 (RF); 0.469 (CNN)). As predicted, R2 values between FRI- and field-trained predictions were higher than R2 values with the FRI. Of the 21 tree species evaluated, 8 relatively rare species had poor models in all cases. Our multivariate approach allowed us to use more FRI stands in model creation than if we had been restricted to stands dominated by single species and allowed us to map species abundances at higher resolution. It might be possible to improve models further by use of tree stem maps and incorporation of the effects of canopy disturbances." @default.
- W3210074257 created "2021-11-08" @default.
- W3210074257 creator A5000618157 @default.
- W3210074257 creator A5001801659 @default.
- W3210074257 creator A5019870560 @default.
- W3210074257 creator A5046443626 @default.
- W3210074257 date "2021-10-26" @default.
- W3210074257 modified "2023-09-27" @default.
- W3210074257 title "Use of Sentinel-2 Data to Improve Multivariate Tree Species Composition in a Forest Resource Inventory" @default.
- W3210074257 cites W114517082 @default.
- W3210074257 cites W1587151174 @default.
- W3210074257 cites W1965555277 @default.
- W3210074257 cites W1984418715 @default.
- W3210074257 cites W2031125107 @default.
- W3210074257 cites W2039960261 @default.
- W3210074257 cites W2045848987 @default.
- W3210074257 cites W2057327074 @default.
- W3210074257 cites W2058962179 @default.
- W3210074257 cites W2084714454 @default.
- W3210074257 cites W2084849146 @default.
- W3210074257 cites W2087148903 @default.
- W3210074257 cites W2093774747 @default.
- W3210074257 cites W2112796928 @default.
- W3210074257 cites W2117598218 @default.
- W3210074257 cites W2124537173 @default.
- W3210074257 cites W2164093644 @default.
- W3210074257 cites W2165432951 @default.
- W3210074257 cites W2166079210 @default.
- W3210074257 cites W2166186288 @default.
- W3210074257 cites W2171738448 @default.
- W3210074257 cites W2172900521 @default.
- W3210074257 cites W2212949369 @default.
- W3210074257 cites W2261059368 @default.
- W3210074257 cites W2567928366 @default.
- W3210074257 cites W2739319313 @default.
- W3210074257 cites W2790275230 @default.
- W3210074257 cites W2808092904 @default.
- W3210074257 cites W2897621597 @default.
- W3210074257 cites W2898152330 @default.
- W3210074257 cites W2898875453 @default.
- W3210074257 cites W2901253484 @default.
- W3210074257 cites W2911964244 @default.
- W3210074257 cites W2921401402 @default.
- W3210074257 cites W2923966159 @default.
- W3210074257 cites W2935706473 @default.
- W3210074257 cites W2945897702 @default.
- W3210074257 cites W2987303464 @default.
- W3210074257 cites W2988576146 @default.
- W3210074257 cites W2999734205 @default.
- W3210074257 cites W3011860789 @default.
- W3210074257 cites W3015686785 @default.
- W3210074257 cites W3088611441 @default.
- W3210074257 cites W3110087056 @default.
- W3210074257 cites W3140257241 @default.
- W3210074257 cites W3170310428 @default.
- W3210074257 doi "https://doi.org/10.3390/rs13214297" @default.
- W3210074257 hasPublicationYear "2021" @default.
- W3210074257 type Work @default.
- W3210074257 sameAs 3210074257 @default.
- W3210074257 citedByCount "2" @default.
- W3210074257 countsByYear W32100742572022 @default.
- W3210074257 countsByYear W32100742572023 @default.
- W3210074257 crossrefType "journal-article" @default.
- W3210074257 hasAuthorship W3210074257A5000618157 @default.
- W3210074257 hasAuthorship W3210074257A5001801659 @default.
- W3210074257 hasAuthorship W3210074257A5019870560 @default.
- W3210074257 hasAuthorship W3210074257A5046443626 @default.
- W3210074257 hasBestOaLocation W32100742571 @default.
- W3210074257 hasConcept C105795698 @default.
- W3210074257 hasConcept C113174947 @default.
- W3210074257 hasConcept C134306372 @default.
- W3210074257 hasConcept C147103442 @default.
- W3210074257 hasConcept C154945302 @default.
- W3210074257 hasConcept C161584116 @default.
- W3210074257 hasConcept C169258074 @default.
- W3210074257 hasConcept C173163844 @default.
- W3210074257 hasConcept C205649164 @default.
- W3210074257 hasConcept C28631016 @default.
- W3210074257 hasConcept C33923547 @default.
- W3210074257 hasConcept C39432304 @default.
- W3210074257 hasConcept C41008148 @default.
- W3210074257 hasConcept C54286561 @default.
- W3210074257 hasConcept C58489278 @default.
- W3210074257 hasConcept C62649853 @default.
- W3210074257 hasConcept C91354502 @default.
- W3210074257 hasConcept C97137747 @default.
- W3210074257 hasConceptScore W3210074257C105795698 @default.
- W3210074257 hasConceptScore W3210074257C113174947 @default.
- W3210074257 hasConceptScore W3210074257C134306372 @default.
- W3210074257 hasConceptScore W3210074257C147103442 @default.
- W3210074257 hasConceptScore W3210074257C154945302 @default.
- W3210074257 hasConceptScore W3210074257C161584116 @default.
- W3210074257 hasConceptScore W3210074257C169258074 @default.
- W3210074257 hasConceptScore W3210074257C173163844 @default.
- W3210074257 hasConceptScore W3210074257C205649164 @default.
- W3210074257 hasConceptScore W3210074257C28631016 @default.
- W3210074257 hasConceptScore W3210074257C33923547 @default.
- W3210074257 hasConceptScore W3210074257C39432304 @default.