Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210083015> ?p ?o ?g. }
- W3210083015 endingPage "48" @default.
- W3210083015 startingPage "38" @default.
- W3210083015 abstract "Background. Neuroimaging biomarkers are valuable predictors of motor improvement after stroke, but there is a gap between published evidence and clinical usage. Objective. In this work, we aimed to investigate whether machine learning techniques, when applied to a combination of baseline whole brain volumes and clinical data, can accurately predict individual motor outcome after stroke. Methods. Upper extremity Fugl-Meyer Assessments (FMA-UE) were conducted 1 week and 12 weeks, and structural MRI was performed 1 week, after onset in 56 patients with subcortical infarction. Proportional recovery model residuals were employed to assign patients to proportional and poor recovery groups (34 vs 22). A sophisticated machine learning scheme, consisting of conditional infomax feature extraction, synthetic minority over-sampling technique for nominal and continuous, and bagging classification, was employed to predict motor outcomes, with the input features being a combination of baseline whole brain volumes and clinical data (FMA-UE scores). Results. The proposed machine learning scheme yielded an overall balanced accuracy of 87.71% in predicting proportional vs poor recovery outcomes, a sensitivity of 93.77% in correctly identifying poor recovery outcomes, and a ROC AUC of 89.74%. Compared with only using clinical data, adding whole brain volumes can significantly improve the classification performance, especially in terms of the overall balanced accuracy (from 80.88% to 87.71%) and the sensitivity (from 92.23% to 93.77%). Conclusions. Experimental results suggest that a combination of baseline whole brain volumes and clinical data, when equipped with appropriate machine learning techniques, may provide valuable information for personalized rehabilitation planning after subcortical infarction." @default.
- W3210083015 created "2021-11-08" @default.
- W3210083015 creator A5005062211 @default.
- W3210083015 creator A5024194761 @default.
- W3210083015 creator A5037124096 @default.
- W3210083015 creator A5038434285 @default.
- W3210083015 creator A5045100551 @default.
- W3210083015 creator A5045414239 @default.
- W3210083015 creator A5045641777 @default.
- W3210083015 creator A5058637832 @default.
- W3210083015 creator A5080168999 @default.
- W3210083015 creator A5085972486 @default.
- W3210083015 date "2021-11-01" @default.
- W3210083015 modified "2023-10-16" @default.
- W3210083015 title "Machine Learning for Predicting Motor Improvement After Acute Subcortical Infarction Using Baseline Whole Brain Volumes" @default.
- W3210083015 cites W1500895378 @default.
- W3210083015 cites W1672453787 @default.
- W3210083015 cites W1678356000 @default.
- W3210083015 cites W1680898150 @default.
- W3210083015 cites W1949395428 @default.
- W3210083015 cites W1976345722 @default.
- W3210083015 cites W1982789449 @default.
- W3210083015 cites W1995005791 @default.
- W3210083015 cites W1997595862 @default.
- W3210083015 cites W2002878741 @default.
- W3210083015 cites W2009735857 @default.
- W3210083015 cites W2022230804 @default.
- W3210083015 cites W2026371916 @default.
- W3210083015 cites W2061214314 @default.
- W3210083015 cites W2078000552 @default.
- W3210083015 cites W2085043781 @default.
- W3210083015 cites W2115362480 @default.
- W3210083015 cites W2118978333 @default.
- W3210083015 cites W2121054487 @default.
- W3210083015 cites W2131456668 @default.
- W3210083015 cites W2133913526 @default.
- W3210083015 cites W2140632361 @default.
- W3210083015 cites W2144686863 @default.
- W3210083015 cites W2148143831 @default.
- W3210083015 cites W2161232291 @default.
- W3210083015 cites W2165695714 @default.
- W3210083015 cites W2169876532 @default.
- W3210083015 cites W2344439428 @default.
- W3210083015 cites W2472295098 @default.
- W3210083015 cites W2480266461 @default.
- W3210083015 cites W2507891125 @default.
- W3210083015 cites W2518294556 @default.
- W3210083015 cites W2525984666 @default.
- W3210083015 cites W2595741287 @default.
- W3210083015 cites W2600258552 @default.
- W3210083015 cites W2626046080 @default.
- W3210083015 cites W2668255820 @default.
- W3210083015 cites W2766416772 @default.
- W3210083015 cites W2789758093 @default.
- W3210083015 cites W2799575743 @default.
- W3210083015 cites W2906137629 @default.
- W3210083015 cites W2909477211 @default.
- W3210083015 cites W2941102596 @default.
- W3210083015 cites W2950442252 @default.
- W3210083015 cites W3011124015 @default.
- W3210083015 cites W3037630032 @default.
- W3210083015 cites W4212883601 @default.
- W3210083015 doi "https://doi.org/10.1177/15459683211054178" @default.
- W3210083015 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34724851" @default.
- W3210083015 hasPublicationYear "2021" @default.
- W3210083015 type Work @default.
- W3210083015 sameAs 3210083015 @default.
- W3210083015 citedByCount "5" @default.
- W3210083015 countsByYear W32100830152022 @default.
- W3210083015 countsByYear W32100830152023 @default.
- W3210083015 crossrefType "journal-article" @default.
- W3210083015 hasAuthorship W3210083015A5005062211 @default.
- W3210083015 hasAuthorship W3210083015A5024194761 @default.
- W3210083015 hasAuthorship W3210083015A5037124096 @default.
- W3210083015 hasAuthorship W3210083015A5038434285 @default.
- W3210083015 hasAuthorship W3210083015A5045100551 @default.
- W3210083015 hasAuthorship W3210083015A5045414239 @default.
- W3210083015 hasAuthorship W3210083015A5045641777 @default.
- W3210083015 hasAuthorship W3210083015A5058637832 @default.
- W3210083015 hasAuthorship W3210083015A5080168999 @default.
- W3210083015 hasAuthorship W3210083015A5085972486 @default.
- W3210083015 hasConcept C118552586 @default.
- W3210083015 hasConcept C119857082 @default.
- W3210083015 hasConcept C120317606 @default.
- W3210083015 hasConcept C127162648 @default.
- W3210083015 hasConcept C127413603 @default.
- W3210083015 hasConcept C153402090 @default.
- W3210083015 hasConcept C154945302 @default.
- W3210083015 hasConcept C15744967 @default.
- W3210083015 hasConcept C2780645631 @default.
- W3210083015 hasConcept C31258907 @default.
- W3210083015 hasConcept C41008148 @default.
- W3210083015 hasConcept C58693492 @default.
- W3210083015 hasConcept C71924100 @default.
- W3210083015 hasConcept C78519656 @default.
- W3210083015 hasConcept C99508421 @default.
- W3210083015 hasConceptScore W3210083015C118552586 @default.
- W3210083015 hasConceptScore W3210083015C119857082 @default.