Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210120160> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3210120160 endingPage "229" @default.
- W3210120160 startingPage "218" @default.
- W3210120160 abstract "Abstract Skin cancer is one of the rapidly growing diseases in the world. Especially, millions of cases are reported every year by all types of skin cancer in America. Early detection of skin cancer using dermoscopy, the light source, and the magnification device are used to inspect the skin lesions. A dermatologist observed hypodermic structures are normally invisible. However, accurate and effective skin disease classification by humans is not straightforward and requires a long time of practice. Furthermore, it is often inaccurate and difficult to reproduce, being unable to completely use the long‐term dependence connection between specific image key features and image labels even for experienced dermatologists. Therefore, it needs to develop a computer‐aided diagnostic system for reliable skin cancer diagnosis. Classical methods focus on designing and combining hand‐craft features from input data and face vanishing or exploding of loss gradient problem, whereas the bidirectional long short term memory (BLSTM) network does not need any prior knowledge or pre‐designing, and it is an expert in keeping the associated information in both directions. Thus, to improve the classification performance for handling these problems, we proposed a hybrid classification method based on the deep convolutional neural network and stacked BLSTM network. Firstly, deep features are extracted from input skin disease facial images. Next, the sequential features among input data are learned using a dual BLSTM network, where dual BLSTM through max‐pooling, the forward and backward long short term memory (LSTM) hidden states of both the feature matrix and its transpose concatenates for inputting into a dense, fully connected (FC) layer. Finally, the softmax function is used to classify skin disease images. To improve the generalization capability, we evaluate our method on two skin disease image datasets and compare their local image descriptors. The proposed method achieved the best mean accuracy of 91.73%, which shows significant improvements in skin disease classification compared with state‐of‐the‐art skin disease classification methods." @default.
- W3210120160 created "2021-11-08" @default.
- W3210120160 creator A5011976241 @default.
- W3210120160 creator A5028290404 @default.
- W3210120160 creator A5041769741 @default.
- W3210120160 creator A5056712435 @default.
- W3210120160 creator A5076070005 @default.
- W3210120160 date "2021-10-28" @default.
- W3210120160 modified "2023-10-09" @default.
- W3210120160 title "An ensemble model of convolution and recurrent neural network for skin disease classification" @default.
- W3210120160 cites W1967049919 @default.
- W3210120160 cites W2028358677 @default.
- W3210120160 cites W2043106860 @default.
- W3210120160 cites W2051167400 @default.
- W3210120160 cites W2148587254 @default.
- W3210120160 cites W2162515926 @default.
- W3210120160 cites W2330219538 @default.
- W3210120160 cites W2564782580 @default.
- W3210120160 cites W2581082771 @default.
- W3210120160 cites W2612806369 @default.
- W3210120160 cites W2744063879 @default.
- W3210120160 cites W2793788319 @default.
- W3210120160 cites W2807079708 @default.
- W3210120160 cites W2898260903 @default.
- W3210120160 cites W2904483377 @default.
- W3210120160 cites W2930823464 @default.
- W3210120160 cites W2951071478 @default.
- W3210120160 cites W2963745697 @default.
- W3210120160 cites W2963853763 @default.
- W3210120160 cites W2966975099 @default.
- W3210120160 cites W2990040069 @default.
- W3210120160 cites W2996717109 @default.
- W3210120160 cites W2997733341 @default.
- W3210120160 cites W2998249562 @default.
- W3210120160 cites W2998401283 @default.
- W3210120160 cites W2999814961 @default.
- W3210120160 cites W3007641206 @default.
- W3210120160 cites W3034781633 @default.
- W3210120160 cites W3047358975 @default.
- W3210120160 cites W3087421454 @default.
- W3210120160 cites W3090325878 @default.
- W3210120160 cites W3091870342 @default.
- W3210120160 cites W3095142972 @default.
- W3210120160 cites W3102785203 @default.
- W3210120160 cites W3120946080 @default.
- W3210120160 cites W3158307528 @default.
- W3210120160 cites W4235649572 @default.
- W3210120160 doi "https://doi.org/10.1002/ima.22661" @default.
- W3210120160 hasPublicationYear "2021" @default.
- W3210120160 type Work @default.
- W3210120160 sameAs 3210120160 @default.
- W3210120160 citedByCount "7" @default.
- W3210120160 countsByYear W32101201602022 @default.
- W3210120160 countsByYear W32101201602023 @default.
- W3210120160 crossrefType "journal-article" @default.
- W3210120160 hasAuthorship W3210120160A5011976241 @default.
- W3210120160 hasAuthorship W3210120160A5028290404 @default.
- W3210120160 hasAuthorship W3210120160A5041769741 @default.
- W3210120160 hasAuthorship W3210120160A5056712435 @default.
- W3210120160 hasAuthorship W3210120160A5076070005 @default.
- W3210120160 hasConcept C108583219 @default.
- W3210120160 hasConcept C138885662 @default.
- W3210120160 hasConcept C153180895 @default.
- W3210120160 hasConcept C154945302 @default.
- W3210120160 hasConcept C2776401178 @default.
- W3210120160 hasConcept C41008148 @default.
- W3210120160 hasConcept C41895202 @default.
- W3210120160 hasConcept C70437156 @default.
- W3210120160 hasConcept C81363708 @default.
- W3210120160 hasConceptScore W3210120160C108583219 @default.
- W3210120160 hasConceptScore W3210120160C138885662 @default.
- W3210120160 hasConceptScore W3210120160C153180895 @default.
- W3210120160 hasConceptScore W3210120160C154945302 @default.
- W3210120160 hasConceptScore W3210120160C2776401178 @default.
- W3210120160 hasConceptScore W3210120160C41008148 @default.
- W3210120160 hasConceptScore W3210120160C41895202 @default.
- W3210120160 hasConceptScore W3210120160C70437156 @default.
- W3210120160 hasConceptScore W3210120160C81363708 @default.
- W3210120160 hasIssue "1" @default.
- W3210120160 hasLocation W32101201601 @default.
- W3210120160 hasOpenAccess W3210120160 @default.
- W3210120160 hasPrimaryLocation W32101201601 @default.
- W3210120160 hasRelatedWork W2517027266 @default.
- W3210120160 hasRelatedWork W2731899572 @default.
- W3210120160 hasRelatedWork W2999805992 @default.
- W3210120160 hasRelatedWork W3011074480 @default.
- W3210120160 hasRelatedWork W3116150086 @default.
- W3210120160 hasRelatedWork W3133861977 @default.
- W3210120160 hasRelatedWork W4200173597 @default.
- W3210120160 hasRelatedWork W4291897433 @default.
- W3210120160 hasRelatedWork W4312417841 @default.
- W3210120160 hasRelatedWork W4321369474 @default.
- W3210120160 hasVolume "32" @default.
- W3210120160 isParatext "false" @default.
- W3210120160 isRetracted "false" @default.
- W3210120160 magId "3210120160" @default.
- W3210120160 workType "article" @default.