Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210123508> ?p ?o ?g. }
- W3210123508 endingPage "339205" @default.
- W3210123508 startingPage "339205" @default.
- W3210123508 abstract "When fourier transform infrared spectroscopy (FTIR) techniques combined with multivariate calibration are used to measure the key process features or analyte concentrations during batch process, model adaption is indispensable for maintaining the predictability of a primary calibration model in new secondary batches. Many model adaption methods conforming to the actual application scenario of batch process have been proposed. Here we report on a novel standard-free model adaption method without reference measurement called variable selection strategy with self-organizing maps (VSSOM). It uses self-organizing maps (SOM) to classify the whole spectral variables into multiple classes according to the spectra from primary batch and secondary batch, respectively; and the corresponding primary feature subsets and secondary feature subsets are formed firstly. Secondly, candidate feature subsets without empty elements are generated by operating intersection between any primary feature subsets and any secondary feature subsets. Thirdly, the candidate feature subset with minimum root mean square error of cross-validation (RMSECV) for the primary calibration set is selected as the optimal feature subset. In this manner, the optimal feature subset can be identified from the candidate feature subsets. In other words, VSSOM aims to create a stable and consistent feature subset across different batches provided that it selects better features within the intersection sets between primary feature subsets and any secondary feature subsets. Two batch process datasets (γ-polyglutamic acid fermentation and paeoniflorin extraction) are presented for comparing the VSSOM method with No transfer partial least squares (PLS), boxcar signal transfer (BST), successive projection algorithm (SPA), transfer component analysis (TCA) and domain-invariant iterative partial least squares (DIPALS). Experimental results show that VSSOM has superior performance and comparable prediction performance in all the scenarios." @default.
- W3210123508 created "2021-11-08" @default.
- W3210123508 creator A5007267853 @default.
- W3210123508 creator A5029115319 @default.
- W3210123508 creator A5041560817 @default.
- W3210123508 creator A5043440896 @default.
- W3210123508 creator A5049889958 @default.
- W3210123508 creator A5057468200 @default.
- W3210123508 creator A5062907745 @default.
- W3210123508 creator A5086239768 @default.
- W3210123508 date "2021-12-01" @default.
- W3210123508 modified "2023-10-14" @default.
- W3210123508 title "Self-organizing maps-based generalized feature set selection for model adaption without reference data for batch process" @default.
- W3210123508 cites W1711785948 @default.
- W3210123508 cites W1966917335 @default.
- W3210123508 cites W1968114170 @default.
- W3210123508 cites W1980919275 @default.
- W3210123508 cites W1993831109 @default.
- W3210123508 cites W1996195892 @default.
- W3210123508 cites W2016090370 @default.
- W3210123508 cites W2018338598 @default.
- W3210123508 cites W2019849941 @default.
- W3210123508 cites W2020062929 @default.
- W3210123508 cites W2020819816 @default.
- W3210123508 cites W2021873216 @default.
- W3210123508 cites W2024778942 @default.
- W3210123508 cites W2033241587 @default.
- W3210123508 cites W2037275106 @default.
- W3210123508 cites W2041782958 @default.
- W3210123508 cites W2051275357 @default.
- W3210123508 cites W2054400753 @default.
- W3210123508 cites W2054527235 @default.
- W3210123508 cites W2054962210 @default.
- W3210123508 cites W2063484421 @default.
- W3210123508 cites W2067875779 @default.
- W3210123508 cites W2073503722 @default.
- W3210123508 cites W2075435986 @default.
- W3210123508 cites W2083259132 @default.
- W3210123508 cites W2084169316 @default.
- W3210123508 cites W2085158741 @default.
- W3210123508 cites W2085834676 @default.
- W3210123508 cites W2086190838 @default.
- W3210123508 cites W2115403315 @default.
- W3210123508 cites W2125575709 @default.
- W3210123508 cites W2141443857 @default.
- W3210123508 cites W2151520117 @default.
- W3210123508 cites W2170512056 @default.
- W3210123508 cites W2280856774 @default.
- W3210123508 cites W2295245291 @default.
- W3210123508 cites W2314036124 @default.
- W3210123508 cites W2327720789 @default.
- W3210123508 cites W2338956161 @default.
- W3210123508 cites W2436632455 @default.
- W3210123508 cites W2474569378 @default.
- W3210123508 cites W2562305317 @default.
- W3210123508 cites W2598191623 @default.
- W3210123508 cites W2604941801 @default.
- W3210123508 cites W2606866887 @default.
- W3210123508 cites W2737003381 @default.
- W3210123508 cites W2754254239 @default.
- W3210123508 cites W2801451447 @default.
- W3210123508 cites W2886631347 @default.
- W3210123508 cites W2887896649 @default.
- W3210123508 cites W2894496765 @default.
- W3210123508 cites W2899704941 @default.
- W3210123508 cites W2907022608 @default.
- W3210123508 cites W2958518658 @default.
- W3210123508 cites W2968264666 @default.
- W3210123508 cites W2974601526 @default.
- W3210123508 cites W2980200613 @default.
- W3210123508 cites W2980937939 @default.
- W3210123508 cites W3000744348 @default.
- W3210123508 cites W3010292342 @default.
- W3210123508 cites W3084504821 @default.
- W3210123508 cites W3091116478 @default.
- W3210123508 cites W3092002326 @default.
- W3210123508 cites W3100447687 @default.
- W3210123508 cites W3106721379 @default.
- W3210123508 cites W3158648238 @default.
- W3210123508 cites W3162319398 @default.
- W3210123508 cites W3165361010 @default.
- W3210123508 cites W3173365324 @default.
- W3210123508 cites W3176512102 @default.
- W3210123508 doi "https://doi.org/10.1016/j.aca.2021.339205" @default.
- W3210123508 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34794558" @default.
- W3210123508 hasPublicationYear "2021" @default.
- W3210123508 type Work @default.
- W3210123508 sameAs 3210123508 @default.
- W3210123508 citedByCount "4" @default.
- W3210123508 countsByYear W32101235082022 @default.
- W3210123508 countsByYear W32101235082023 @default.
- W3210123508 crossrefType "journal-article" @default.
- W3210123508 hasAuthorship W3210123508A5007267853 @default.
- W3210123508 hasAuthorship W3210123508A5029115319 @default.
- W3210123508 hasAuthorship W3210123508A5041560817 @default.
- W3210123508 hasAuthorship W3210123508A5043440896 @default.
- W3210123508 hasAuthorship W3210123508A5049889958 @default.
- W3210123508 hasAuthorship W3210123508A5057468200 @default.