Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210139106> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3210139106 endingPage "032055" @default.
- W3210139106 startingPage "032055" @default.
- W3210139106 abstract "Understanding the formation and evolution of geosystems as a result of coupled processes from microscale structure to core-scale samples is critically important for predicting meso- to macro-scale multi-physical behavior, thus providing effective control of subsurface energy recovery and storage activities. In this paper, we present integrated machine learning and numerical modeling approaches that we have developed to understand fundamental geosystem behavior, to predict their mesoscale behavior, and to analyze large-scale performance of such geosystems subject to multi-physical couplings. First of all, we will present a high-level summary of our developed modelling capabilities based on the numerical manifold method [1]. Then we will present theoretical comparison between machine learning and numerical modeling [2]. Using current machine learning techniques on image recognition, we make flexible use of these techniques to integrate experimental data with numerical modeling. By using a convolutional neural network, U-net, we show results of fractures recognized from rock images [3]. By using a machine learning approach referred to as neural style transfer, we will show automatic and efficient mesh generation and optimization from rock images [2]. With a microscale model for capturing dynamic contacts between geomaterials with arbitrary shapes of grains and interfaces [4], we extend this model by accounting for hydro-mechanical couplings and realistic geometry using digital representations of rocks [1]. Using different examples, we show the unique capabilities to simulate coupled processes in fractures at different scales and microscale granular systems, while applying differing physical laws, coupling priorities, and solutions for evolving geometry at multiple scales [5]. We will conclude with perspectives on solutions to bridge the gaps between fundamental and applied geosciences by integrating machine learning and numerical modeling." @default.
- W3210139106 created "2021-11-08" @default.
- W3210139106 creator A5047675317 @default.
- W3210139106 date "2021-10-01" @default.
- W3210139106 modified "2023-09-25" @default.
- W3210139106 title "Integrated Machine Learning and Numerical Modeling for Multiscale Analyses of Coupled Processes in Geosystems" @default.
- W3210139106 cites W2514629576 @default.
- W3210139106 cites W2529612302 @default.
- W3210139106 cites W2587653708 @default.
- W3210139106 cites W3025133487 @default.
- W3210139106 cites W3047358335 @default.
- W3210139106 cites W3157505722 @default.
- W3210139106 cites W4200614688 @default.
- W3210139106 doi "https://doi.org/10.1088/1755-1315/861/3/032055" @default.
- W3210139106 hasPublicationYear "2021" @default.
- W3210139106 type Work @default.
- W3210139106 sameAs 3210139106 @default.
- W3210139106 citedByCount "0" @default.
- W3210139106 crossrefType "journal-article" @default.
- W3210139106 hasAuthorship W3210139106A5047675317 @default.
- W3210139106 hasBestOaLocation W32101391061 @default.
- W3210139106 hasConcept C119857082 @default.
- W3210139106 hasConcept C121332964 @default.
- W3210139106 hasConcept C127313418 @default.
- W3210139106 hasConcept C127413603 @default.
- W3210139106 hasConcept C131584629 @default.
- W3210139106 hasConcept C145420912 @default.
- W3210139106 hasConcept C154945302 @default.
- W3210139106 hasConcept C179428855 @default.
- W3210139106 hasConcept C2778755073 @default.
- W3210139106 hasConcept C33923547 @default.
- W3210139106 hasConcept C40382383 @default.
- W3210139106 hasConcept C41008148 @default.
- W3210139106 hasConcept C49204034 @default.
- W3210139106 hasConcept C50644808 @default.
- W3210139106 hasConcept C62520636 @default.
- W3210139106 hasConcept C78519656 @default.
- W3210139106 hasConcept C81363708 @default.
- W3210139106 hasConceptScore W3210139106C119857082 @default.
- W3210139106 hasConceptScore W3210139106C121332964 @default.
- W3210139106 hasConceptScore W3210139106C127313418 @default.
- W3210139106 hasConceptScore W3210139106C127413603 @default.
- W3210139106 hasConceptScore W3210139106C131584629 @default.
- W3210139106 hasConceptScore W3210139106C145420912 @default.
- W3210139106 hasConceptScore W3210139106C154945302 @default.
- W3210139106 hasConceptScore W3210139106C179428855 @default.
- W3210139106 hasConceptScore W3210139106C2778755073 @default.
- W3210139106 hasConceptScore W3210139106C33923547 @default.
- W3210139106 hasConceptScore W3210139106C40382383 @default.
- W3210139106 hasConceptScore W3210139106C41008148 @default.
- W3210139106 hasConceptScore W3210139106C49204034 @default.
- W3210139106 hasConceptScore W3210139106C50644808 @default.
- W3210139106 hasConceptScore W3210139106C62520636 @default.
- W3210139106 hasConceptScore W3210139106C78519656 @default.
- W3210139106 hasConceptScore W3210139106C81363708 @default.
- W3210139106 hasIssue "3" @default.
- W3210139106 hasLocation W32101391061 @default.
- W3210139106 hasOpenAccess W3210139106 @default.
- W3210139106 hasPrimaryLocation W32101391061 @default.
- W3210139106 hasRelatedWork W2337926734 @default.
- W3210139106 hasRelatedWork W2978290780 @default.
- W3210139106 hasRelatedWork W3027997911 @default.
- W3210139106 hasRelatedWork W4287776258 @default.
- W3210139106 hasRelatedWork W4312501200 @default.
- W3210139106 hasRelatedWork W4313050734 @default.
- W3210139106 hasRelatedWork W4320802194 @default.
- W3210139106 hasRelatedWork W4366224123 @default.
- W3210139106 hasRelatedWork W57864136 @default.
- W3210139106 hasRelatedWork W1629725936 @default.
- W3210139106 hasVolume "861" @default.
- W3210139106 isParatext "false" @default.
- W3210139106 isRetracted "false" @default.
- W3210139106 magId "3210139106" @default.
- W3210139106 workType "article" @default.