Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210152582> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3210152582 endingPage "31" @default.
- W3210152582 startingPage "23" @default.
- W3210152582 abstract "The subject matter of the article is the process of computer simulation modeling of complex networks. The goal is to develop a method of computer simulation modeling of ordinary user and bot behavior in a recommendation system based on the theory of complex networks to test the accuracy and robustness of various algorithms for generating recommendations. The tasks to be solved are: to develop a computer simulation model of user and bot behavior in a recommendation system with the ability to generate datasets for testing recommendation generation algorithms. The methods used are: graph theory, theory of complex networks, statistics theory, probability theory, methods of object-oriented programming and methods of working with graph databases. Results. A method of computer simulation modeling of users and objects in a recommender system was proposed, which consists of generating the structure of the social graph of a recommender system and simulating user and bot behavior in it. A series of experiments to test the performance of the developed computer simulation model was carried out. During the experiments, working and testing datasets were generated. Based on the working datasets, the preferences of users by the method of collaborative filtering were predicted. Based on testing datasets, the accuracy of prediction predictions was checked. The results of the experiments showed that the jitter of the investigated values of the Precision, Recall and RMSE of prediction predictions in most practical cases confidently fits within the allowable fluctuation limits, and therefore the users' behavior in computer simulation model was not random and it real users' behavior with certain preferences was simulated. This confirms the reliability of the developed computer simulation model of a recommendation system. Conclusions. A method of computer simulation modeling of user and bot behavior in a recommendation system, which allows generating datasets for testing the algorithms for generating recommendations, was proposed. The developed method makes it possible to simulate the behavior of both ordinary users and bots, which makes it possible to create datasets for testing the robustness of recommender systems to information attacks, as well as for testing the effectiveness of methods for detecting and neutralizing botnets. The structure of relations between users and objects of the recommender system was modeled using the theory of complex networks. Information attacks of bots were modeled on the basis of known models of profile-injection attacks on recommender systems." @default.
- W3210152582 created "2021-11-08" @default.
- W3210152582 creator A5072950287 @default.
- W3210152582 creator A5076280362 @default.
- W3210152582 creator A5090983475 @default.
- W3210152582 date "2021-10-20" @default.
- W3210152582 modified "2023-10-16" @default.
- W3210152582 title "A METHOD OF COMPUTER SIMULATION MODELING OF USER AND BOT BEHAVIOR IN A RECOMMENDATION SYSTEM USING THE GRAPH DATABASE NEO4J" @default.
- W3210152582 cites W1536558110 @default.
- W3210152582 cites W1572923654 @default.
- W3210152582 cites W1686455638 @default.
- W3210152582 cites W1746313269 @default.
- W3210152582 cites W1977290284 @default.
- W3210152582 cites W1989279326 @default.
- W3210152582 cites W2008620264 @default.
- W3210152582 cites W2048324994 @default.
- W3210152582 cites W2098121414 @default.
- W3210152582 cites W2112090702 @default.
- W3210152582 cites W2115579680 @default.
- W3210152582 cites W2117495845 @default.
- W3210152582 cites W2124637492 @default.
- W3210152582 cites W2219888463 @default.
- W3210152582 cites W2806005273 @default.
- W3210152582 cites W2908153988 @default.
- W3210152582 cites W2953798864 @default.
- W3210152582 cites W2962786055 @default.
- W3210152582 cites W2967098713 @default.
- W3210152582 cites W3142570770 @default.
- W3210152582 doi "https://doi.org/10.30837/itssi.2021.17.023" @default.
- W3210152582 hasPublicationYear "2021" @default.
- W3210152582 type Work @default.
- W3210152582 sameAs 3210152582 @default.
- W3210152582 citedByCount "0" @default.
- W3210152582 crossrefType "journal-article" @default.
- W3210152582 hasAuthorship W3210152582A5072950287 @default.
- W3210152582 hasAuthorship W3210152582A5076280362 @default.
- W3210152582 hasAuthorship W3210152582A5090983475 @default.
- W3210152582 hasBestOaLocation W32101525821 @default.
- W3210152582 hasConcept C104317684 @default.
- W3210152582 hasConcept C119857082 @default.
- W3210152582 hasConcept C124101348 @default.
- W3210152582 hasConcept C132525143 @default.
- W3210152582 hasConcept C185592680 @default.
- W3210152582 hasConcept C41008148 @default.
- W3210152582 hasConcept C55493867 @default.
- W3210152582 hasConcept C557471498 @default.
- W3210152582 hasConcept C63479239 @default.
- W3210152582 hasConcept C77088390 @default.
- W3210152582 hasConcept C80444323 @default.
- W3210152582 hasConceptScore W3210152582C104317684 @default.
- W3210152582 hasConceptScore W3210152582C119857082 @default.
- W3210152582 hasConceptScore W3210152582C124101348 @default.
- W3210152582 hasConceptScore W3210152582C132525143 @default.
- W3210152582 hasConceptScore W3210152582C185592680 @default.
- W3210152582 hasConceptScore W3210152582C41008148 @default.
- W3210152582 hasConceptScore W3210152582C55493867 @default.
- W3210152582 hasConceptScore W3210152582C557471498 @default.
- W3210152582 hasConceptScore W3210152582C63479239 @default.
- W3210152582 hasConceptScore W3210152582C77088390 @default.
- W3210152582 hasConceptScore W3210152582C80444323 @default.
- W3210152582 hasIssue "3 (17)" @default.
- W3210152582 hasLocation W32101525821 @default.
- W3210152582 hasLocation W32101525822 @default.
- W3210152582 hasOpenAccess W3210152582 @default.
- W3210152582 hasPrimaryLocation W32101525821 @default.
- W3210152582 hasRelatedWork W2319928773 @default.
- W3210152582 hasRelatedWork W2809363009 @default.
- W3210152582 hasRelatedWork W2883909875 @default.
- W3210152582 hasRelatedWork W2998431760 @default.
- W3210152582 hasRelatedWork W3040421865 @default.
- W3210152582 hasRelatedWork W3134323795 @default.
- W3210152582 hasRelatedWork W3192038712 @default.
- W3210152582 hasRelatedWork W4200211378 @default.
- W3210152582 hasRelatedWork W4206925842 @default.
- W3210152582 hasRelatedWork W4287281996 @default.
- W3210152582 isParatext "false" @default.
- W3210152582 isRetracted "false" @default.
- W3210152582 magId "3210152582" @default.
- W3210152582 workType "article" @default.