Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210155498> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3210155498 abstract "Climate variability in recent years has critically affected the usual aspects of human lives, where the agriculture sector can be considered as one of the most vulnerable. Sri Lanka is also facing these climate changes over the past few decades. It has resulted in rainfall pattern changes where the expected rain may not occur during the expected time and amount. The mismatch between the rainfall pattern and traditional seasonal cultivation schedule has critically affected the agricultural sustainability. Even with the current technological advancements, weather prediction is one of the most technically and scientifically challenging tasks. This paper presents a novel machine learning-based approach for predicting rainfall for precision agriculture in Sri Lanka and it can be recognized as the first attempt to validate machine learning models to predict the weather in Sri Lankan context for precision agriculture. By analyzing the nature of the weather in Sri Lanka, the relationship of weather attributes with agriculture, availability, and accessibility, seven attributes are selected including rain gauge, relative humidity, average temperature, wind speed, wind direction where solar radiation and ozone concentration are uniquely selected for Sri Lankan context. For the prediction model, cross-validated data are trained and tested with four machine learning algorithms: Multiple Linear Regression, K-Nearest Neighbors, Support Vector Machine, and Random Forest. Currently, Support Vector Machine, K-Nearest Neighbors models have achieved accuracies of 88.57%, 88.66%. Random Forest has been recognized as the best-fitted model with 89.16% accuracy. The results depict a significant accuracy in this novel approach for Sri Lankan weather prediction." @default.
- W3210155498 created "2021-11-08" @default.
- W3210155498 creator A5036781676 @default.
- W3210155498 creator A5054871727 @default.
- W3210155498 date "2021-09-16" @default.
- W3210155498 modified "2023-10-01" @default.
- W3210155498 title "A novel approach for weather prediction for agriculture in Sri Lanka using Machine Learning techniques" @default.
- W3210155498 cites W2008984269 @default.
- W3210155498 cites W2085677053 @default.
- W3210155498 cites W2142614521 @default.
- W3210155498 cites W2786065052 @default.
- W3210155498 cites W2808396173 @default.
- W3210155498 cites W2809725986 @default.
- W3210155498 cites W2954390006 @default.
- W3210155498 cites W3120697286 @default.
- W3210155498 cites W4248083651 @default.
- W3210155498 doi "https://doi.org/10.1109/scse53661.2021.9568319" @default.
- W3210155498 hasPublicationYear "2021" @default.
- W3210155498 type Work @default.
- W3210155498 sameAs 3210155498 @default.
- W3210155498 citedByCount "6" @default.
- W3210155498 countsByYear W32101554982021 @default.
- W3210155498 countsByYear W32101554982022 @default.
- W3210155498 countsByYear W32101554982023 @default.
- W3210155498 crossrefType "proceedings-article" @default.
- W3210155498 hasAuthorship W3210155498A5036781676 @default.
- W3210155498 hasAuthorship W3210155498A5054871727 @default.
- W3210155498 hasConcept C111919701 @default.
- W3210155498 hasConcept C118518473 @default.
- W3210155498 hasConcept C119857082 @default.
- W3210155498 hasConcept C12267149 @default.
- W3210155498 hasConcept C132651083 @default.
- W3210155498 hasConcept C153294291 @default.
- W3210155498 hasConcept C154945302 @default.
- W3210155498 hasConcept C161067210 @default.
- W3210155498 hasConcept C166957645 @default.
- W3210155498 hasConcept C169258074 @default.
- W3210155498 hasConcept C18903297 @default.
- W3210155498 hasConcept C205649164 @default.
- W3210155498 hasConcept C2779343474 @default.
- W3210155498 hasConcept C2779357621 @default.
- W3210155498 hasConcept C2987469573 @default.
- W3210155498 hasConcept C3017649214 @default.
- W3210155498 hasConcept C39432304 @default.
- W3210155498 hasConcept C41008148 @default.
- W3210155498 hasConcept C45804977 @default.
- W3210155498 hasConcept C68387754 @default.
- W3210155498 hasConcept C86803240 @default.
- W3210155498 hasConcept C91375879 @default.
- W3210155498 hasConceptScore W3210155498C111919701 @default.
- W3210155498 hasConceptScore W3210155498C118518473 @default.
- W3210155498 hasConceptScore W3210155498C119857082 @default.
- W3210155498 hasConceptScore W3210155498C12267149 @default.
- W3210155498 hasConceptScore W3210155498C132651083 @default.
- W3210155498 hasConceptScore W3210155498C153294291 @default.
- W3210155498 hasConceptScore W3210155498C154945302 @default.
- W3210155498 hasConceptScore W3210155498C161067210 @default.
- W3210155498 hasConceptScore W3210155498C166957645 @default.
- W3210155498 hasConceptScore W3210155498C169258074 @default.
- W3210155498 hasConceptScore W3210155498C18903297 @default.
- W3210155498 hasConceptScore W3210155498C205649164 @default.
- W3210155498 hasConceptScore W3210155498C2779343474 @default.
- W3210155498 hasConceptScore W3210155498C2779357621 @default.
- W3210155498 hasConceptScore W3210155498C2987469573 @default.
- W3210155498 hasConceptScore W3210155498C3017649214 @default.
- W3210155498 hasConceptScore W3210155498C39432304 @default.
- W3210155498 hasConceptScore W3210155498C41008148 @default.
- W3210155498 hasConceptScore W3210155498C45804977 @default.
- W3210155498 hasConceptScore W3210155498C68387754 @default.
- W3210155498 hasConceptScore W3210155498C86803240 @default.
- W3210155498 hasConceptScore W3210155498C91375879 @default.
- W3210155498 hasLocation W32101554981 @default.
- W3210155498 hasOpenAccess W3210155498 @default.
- W3210155498 hasPrimaryLocation W32101554981 @default.
- W3210155498 hasRelatedWork W2979979539 @default.
- W3210155498 hasRelatedWork W3004897296 @default.
- W3210155498 hasRelatedWork W3127425528 @default.
- W3210155498 hasRelatedWork W3143658565 @default.
- W3210155498 hasRelatedWork W3195168932 @default.
- W3210155498 hasRelatedWork W4205958290 @default.
- W3210155498 hasRelatedWork W4283762323 @default.
- W3210155498 hasRelatedWork W4311106074 @default.
- W3210155498 hasRelatedWork W4312949351 @default.
- W3210155498 hasRelatedWork W4320483443 @default.
- W3210155498 isParatext "false" @default.
- W3210155498 isRetracted "false" @default.
- W3210155498 magId "3210155498" @default.
- W3210155498 workType "article" @default.