Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210196405> ?p ?o ?g. }
- W3210196405 endingPage "1044" @default.
- W3210196405 startingPage "1029" @default.
- W3210196405 abstract "Multiple types of genomic variations are present in cutaneous melanoma and some of the genomic features may have an impact on the prognosis of the disease. The access to genomics data via public repositories such as The Cancer Genome Atlas (TCGA) allows for a better understanding of melanoma at the molecular level, therefore making characterization of substantial heterogeneity in melanoma patients possible. Here, we proposed an approach that integrates genomics data, a disease network, and a deep learning model to classify melanoma patients for prognosis, assess the impact of genomic features on the classification and provide interpretation to the impactful features. We integrated genomics data into a melanoma network and applied an autoencoder model to identify subgroups in TCGA melanoma patients. The model utilizes communities identified in the network to effectively reduce the dimensionality of genomics data into a patient score profile. Based on the score profile, we identified three patient subtypes that show different survival times. Furthermore, we quantified and ranked the impact of genomic features on the patient score profile using a machine-learning technique. Follow-up analysis of the top-ranking features provided us with the biological interpretation of them at both pathway and molecular levels, such as their mutation and interactome profiles in melanoma and their involvement in pathways associated with signaling transduction, immune system and cell cycle. Taken together, we demonstrated the ability of the approach to identify disease subgroups using a deep learning model that captures the most relevant information of genomics data in the melanoma network." @default.
- W3210196405 created "2021-11-08" @default.
- W3210196405 creator A5001574034 @default.
- W3210196405 creator A5010224302 @default.
- W3210196405 creator A5021019207 @default.
- W3210196405 creator A5030254051 @default.
- W3210196405 creator A5032499810 @default.
- W3210196405 creator A5056685282 @default.
- W3210196405 creator A5067743298 @default.
- W3210196405 creator A5072203765 @default.
- W3210196405 date "2021-11-17" @default.
- W3210196405 modified "2023-10-14" @default.
- W3210196405 title "A disease network‐based deep learning approach for characterizing melanoma" @default.
- W3210196405 cites W1501003333 @default.
- W3210196405 cites W1978559408 @default.
- W3210196405 cites W1984621921 @default.
- W3210196405 cites W1985126333 @default.
- W3210196405 cites W1990922437 @default.
- W3210196405 cites W1991488995 @default.
- W3210196405 cites W1997074238 @default.
- W3210196405 cites W1997223805 @default.
- W3210196405 cites W2012078419 @default.
- W3210196405 cites W2016097399 @default.
- W3210196405 cites W2025543856 @default.
- W3210196405 cites W2028415754 @default.
- W3210196405 cites W2029386401 @default.
- W3210196405 cites W2031009350 @default.
- W3210196405 cites W2061047690 @default.
- W3210196405 cites W2067181050 @default.
- W3210196405 cites W2081165140 @default.
- W3210196405 cites W2096387850 @default.
- W3210196405 cites W2099079092 @default.
- W3210196405 cites W2102978104 @default.
- W3210196405 cites W2112882766 @default.
- W3210196405 cites W2127646256 @default.
- W3210196405 cites W2130854041 @default.
- W3210196405 cites W2137250828 @default.
- W3210196405 cites W2141783822 @default.
- W3210196405 cites W2155828631 @default.
- W3210196405 cites W2156214225 @default.
- W3210196405 cites W2344243171 @default.
- W3210196405 cites W2539555867 @default.
- W3210196405 cites W2557833574 @default.
- W3210196405 cites W2569342357 @default.
- W3210196405 cites W2622954972 @default.
- W3210196405 cites W2744377419 @default.
- W3210196405 cites W2745658163 @default.
- W3210196405 cites W2762347490 @default.
- W3210196405 cites W2791217260 @default.
- W3210196405 cites W2811242353 @default.
- W3210196405 cites W2885459183 @default.
- W3210196405 cites W2895357007 @default.
- W3210196405 cites W2917087462 @default.
- W3210196405 cites W2917858269 @default.
- W3210196405 cites W2921818100 @default.
- W3210196405 cites W2948547247 @default.
- W3210196405 cites W2951934944 @default.
- W3210196405 cites W2952377308 @default.
- W3210196405 cites W2963934840 @default.
- W3210196405 cites W2972384654 @default.
- W3210196405 cites W2976806193 @default.
- W3210196405 cites W2998556046 @default.
- W3210196405 cites W3000157395 @default.
- W3210196405 cites W3009535750 @default.
- W3210196405 cites W3016446614 @default.
- W3210196405 cites W3017019970 @default.
- W3210196405 cites W3026899094 @default.
- W3210196405 cites W3043242675 @default.
- W3210196405 cites W3090386083 @default.
- W3210196405 cites W3090469545 @default.
- W3210196405 cites W3111398352 @default.
- W3210196405 cites W3127658121 @default.
- W3210196405 cites W3164087245 @default.
- W3210196405 cites W3171213182 @default.
- W3210196405 cites W4211223138 @default.
- W3210196405 cites W4233698560 @default.
- W3210196405 doi "https://doi.org/10.1002/ijc.33860" @default.
- W3210196405 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34716589" @default.
- W3210196405 hasPublicationYear "2021" @default.
- W3210196405 type Work @default.
- W3210196405 sameAs 3210196405 @default.
- W3210196405 citedByCount "10" @default.
- W3210196405 countsByYear W32101964052022 @default.
- W3210196405 countsByYear W32101964052023 @default.
- W3210196405 crossrefType "journal-article" @default.
- W3210196405 hasAuthorship W3210196405A5001574034 @default.
- W3210196405 hasAuthorship W3210196405A5010224302 @default.
- W3210196405 hasAuthorship W3210196405A5021019207 @default.
- W3210196405 hasAuthorship W3210196405A5030254051 @default.
- W3210196405 hasAuthorship W3210196405A5032499810 @default.
- W3210196405 hasAuthorship W3210196405A5056685282 @default.
- W3210196405 hasAuthorship W3210196405A5067743298 @default.
- W3210196405 hasAuthorship W3210196405A5072203765 @default.
- W3210196405 hasConcept C101738243 @default.
- W3210196405 hasConcept C104317684 @default.
- W3210196405 hasConcept C108583219 @default.
- W3210196405 hasConcept C119857082 @default.
- W3210196405 hasConcept C126322002 @default.