Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210281784> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3210281784 endingPage "1" @default.
- W3210281784 startingPage "1" @default.
- W3210281784 abstract "Sepsis is a major public concern due to its high mortality, morbidity, and financial cost. There are many existing works of early sepsis prediction using different machine learning models to mitigate the outcomes brought by sepsis. In the practical scenario, the dataset grows dynamically as new patients visit the hospital. Most existing models, being offline models and having used retrospective observational data, cannot be updated and improved dynamically using the new observational data. Incorporating the new data to improve the offline models requires retraining the model, which is very computationally expensive. To solve the challenge mentioned above, we propose an Online Artificial Intelligence Experts Competing Framework (OnAI-Comp) for early sepsis detection using an online learning algorithm called Multi-armed Bandit. We selected several machine learning models as the artificial intelligence experts and used average regret to evaluate the performance of our model. The experimental analysis demonstrated that our model would converge to the optimal strategy in the long run. Meanwhile, our model can provide clinically interpretable predictions using existing local interpretable model-agnostic explanation technologies, which can aid clinicians in making decisions and might improve the probability of survival." @default.
- W3210281784 created "2021-11-08" @default.
- W3210281784 creator A5012511062 @default.
- W3210281784 creator A5066916754 @default.
- W3210281784 creator A5069776086 @default.
- W3210281784 date "2021-01-01" @default.
- W3210281784 modified "2023-10-18" @default.
- W3210281784 title "OnAI-Comp: An Online AI Experts Competing Framework for Early Sepsis Detection" @default.
- W3210281784 cites W1569127318 @default.
- W3210281784 cites W1975779216 @default.
- W3210281784 cites W1988386616 @default.
- W3210281784 cites W2007497300 @default.
- W3210281784 cites W2039522160 @default.
- W3210281784 cites W2049934117 @default.
- W3210281784 cites W2064675550 @default.
- W3210281784 cites W2113733815 @default.
- W3210281784 cites W2165713838 @default.
- W3210281784 cites W2168405694 @default.
- W3210281784 cites W2280404143 @default.
- W3210281784 cites W2282821441 @default.
- W3210281784 cites W2519501974 @default.
- W3210281784 cites W2760052617 @default.
- W3210281784 cites W2776803885 @default.
- W3210281784 cites W2786635213 @default.
- W3210281784 cites W2811050830 @default.
- W3210281784 cites W2884306980 @default.
- W3210281784 cites W2905123315 @default.
- W3210281784 cites W2980177178 @default.
- W3210281784 cites W2992764683 @default.
- W3210281784 cites W2998853022 @default.
- W3210281784 cites W2999759928 @default.
- W3210281784 cites W3005429114 @default.
- W3210281784 cites W3005797804 @default.
- W3210281784 cites W3027747864 @default.
- W3210281784 cites W3046153892 @default.
- W3210281784 cites W3048074762 @default.
- W3210281784 cites W3090569391 @default.
- W3210281784 cites W3130648395 @default.
- W3210281784 cites W3130868966 @default.
- W3210281784 cites W4253672928 @default.
- W3210281784 doi "https://doi.org/10.1109/tcbb.2021.3122405" @default.
- W3210281784 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34699366" @default.
- W3210281784 hasPublicationYear "2021" @default.
- W3210281784 type Work @default.
- W3210281784 sameAs 3210281784 @default.
- W3210281784 citedByCount "5" @default.
- W3210281784 countsByYear W32102817842022 @default.
- W3210281784 countsByYear W32102817842023 @default.
- W3210281784 crossrefType "journal-article" @default.
- W3210281784 hasAuthorship W3210281784A5012511062 @default.
- W3210281784 hasAuthorship W3210281784A5066916754 @default.
- W3210281784 hasAuthorship W3210281784A5069776086 @default.
- W3210281784 hasBestOaLocation W32102817841 @default.
- W3210281784 hasConcept C119857082 @default.
- W3210281784 hasConcept C142724271 @default.
- W3210281784 hasConcept C144133560 @default.
- W3210281784 hasConcept C154945302 @default.
- W3210281784 hasConcept C155202549 @default.
- W3210281784 hasConcept C23131810 @default.
- W3210281784 hasConcept C2522767166 @default.
- W3210281784 hasConcept C2778712577 @default.
- W3210281784 hasConcept C41008148 @default.
- W3210281784 hasConcept C50817715 @default.
- W3210281784 hasConcept C71924100 @default.
- W3210281784 hasConceptScore W3210281784C119857082 @default.
- W3210281784 hasConceptScore W3210281784C142724271 @default.
- W3210281784 hasConceptScore W3210281784C144133560 @default.
- W3210281784 hasConceptScore W3210281784C154945302 @default.
- W3210281784 hasConceptScore W3210281784C155202549 @default.
- W3210281784 hasConceptScore W3210281784C23131810 @default.
- W3210281784 hasConceptScore W3210281784C2522767166 @default.
- W3210281784 hasConceptScore W3210281784C2778712577 @default.
- W3210281784 hasConceptScore W3210281784C41008148 @default.
- W3210281784 hasConceptScore W3210281784C50817715 @default.
- W3210281784 hasConceptScore W3210281784C71924100 @default.
- W3210281784 hasLocation W32102817841 @default.
- W3210281784 hasLocation W32102817842 @default.
- W3210281784 hasOpenAccess W3210281784 @default.
- W3210281784 hasPrimaryLocation W32102817841 @default.
- W3210281784 hasRelatedWork W2125976306 @default.
- W3210281784 hasRelatedWork W2961085424 @default.
- W3210281784 hasRelatedWork W3046775127 @default.
- W3210281784 hasRelatedWork W3170094116 @default.
- W3210281784 hasRelatedWork W3210281784 @default.
- W3210281784 hasRelatedWork W4285260836 @default.
- W3210281784 hasRelatedWork W4286629047 @default.
- W3210281784 hasRelatedWork W4306321456 @default.
- W3210281784 hasRelatedWork W4306674287 @default.
- W3210281784 hasRelatedWork W4224009465 @default.
- W3210281784 isParatext "false" @default.
- W3210281784 isRetracted "false" @default.
- W3210281784 magId "3210281784" @default.
- W3210281784 workType "article" @default.