Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210293313> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3210293313 abstract "Pollen classification is an important task in many fields, including allergology, archaeobotany and biodiversity conservation. However, the visual classification of pollen grains is a major challenge due to the difficulty in identifying the subtle variations between the sub-categories of objects. The pollen image analysis process is often time-consuming and require expert evaluations. Even simple tasks, such as image classification or segmentation requires significant efforts from experts in aerobiology. Hence, there is a strong need to develop automatic solutions for microscopy image analysis. These considerations underline the effort to study and develop new efficient algorithms. With the growing interest in Deep Learning (DL), much research efforts have been spent to the development of several approaches to accomplish this task. Hence, this study covers the application of effective Deep Learning methods in combination with Fine-Grained Visual Classification (FGVC) approaches, comparing them with other Deep Learning-based methods from the state-of-art. All experiments were conducted using the dataset Pollen13K, composed of more than 13,000 pollen objects subdivided in 4 classes. The results of experiments confirmed the effectiveness of our proposed pipeline that reached over 97% in terms of accuracy and F1-score." @default.
- W3210293313 created "2021-11-08" @default.
- W3210293313 creator A5042746008 @default.
- W3210293313 creator A5066281190 @default.
- W3210293313 creator A5076307306 @default.
- W3210293313 date "2021-01-01" @default.
- W3210293313 modified "2023-09-24" @default.
- W3210293313 title "Fine-Grained Image Classification for Pollen Grain Microscope Images" @default.
- W3210293313 cites W1600737329 @default.
- W3210293313 cites W2009797711 @default.
- W3210293313 cites W2194775991 @default.
- W3210293313 cites W2767106145 @default.
- W3210293313 cites W2961018736 @default.
- W3210293313 cites W2963495494 @default.
- W3210293313 cites W2964060161 @default.
- W3210293313 cites W2992308087 @default.
- W3210293313 cites W3035223629 @default.
- W3210293313 cites W3045073967 @default.
- W3210293313 cites W3091457382 @default.
- W3210293313 cites W3108870912 @default.
- W3210293313 cites W3129199021 @default.
- W3210293313 cites W3129361716 @default.
- W3210293313 cites W3130046614 @default.
- W3210293313 doi "https://doi.org/10.1007/978-3-030-89128-2_33" @default.
- W3210293313 hasPublicationYear "2021" @default.
- W3210293313 type Work @default.
- W3210293313 sameAs 3210293313 @default.
- W3210293313 citedByCount "1" @default.
- W3210293313 countsByYear W32102933132022 @default.
- W3210293313 crossrefType "book-chapter" @default.
- W3210293313 hasAuthorship W3210293313A5042746008 @default.
- W3210293313 hasAuthorship W3210293313A5066281190 @default.
- W3210293313 hasAuthorship W3210293313A5076307306 @default.
- W3210293313 hasConcept C108583219 @default.
- W3210293313 hasConcept C111919701 @default.
- W3210293313 hasConcept C115961682 @default.
- W3210293313 hasConcept C119857082 @default.
- W3210293313 hasConcept C153180895 @default.
- W3210293313 hasConcept C154945302 @default.
- W3210293313 hasConcept C162324750 @default.
- W3210293313 hasConcept C187736073 @default.
- W3210293313 hasConcept C18903297 @default.
- W3210293313 hasConcept C199360897 @default.
- W3210293313 hasConcept C2780451532 @default.
- W3210293313 hasConcept C2780618852 @default.
- W3210293313 hasConcept C31972630 @default.
- W3210293313 hasConcept C41008148 @default.
- W3210293313 hasConcept C43521106 @default.
- W3210293313 hasConcept C75294576 @default.
- W3210293313 hasConcept C86803240 @default.
- W3210293313 hasConcept C89600930 @default.
- W3210293313 hasConcept C98045186 @default.
- W3210293313 hasConceptScore W3210293313C108583219 @default.
- W3210293313 hasConceptScore W3210293313C111919701 @default.
- W3210293313 hasConceptScore W3210293313C115961682 @default.
- W3210293313 hasConceptScore W3210293313C119857082 @default.
- W3210293313 hasConceptScore W3210293313C153180895 @default.
- W3210293313 hasConceptScore W3210293313C154945302 @default.
- W3210293313 hasConceptScore W3210293313C162324750 @default.
- W3210293313 hasConceptScore W3210293313C187736073 @default.
- W3210293313 hasConceptScore W3210293313C18903297 @default.
- W3210293313 hasConceptScore W3210293313C199360897 @default.
- W3210293313 hasConceptScore W3210293313C2780451532 @default.
- W3210293313 hasConceptScore W3210293313C2780618852 @default.
- W3210293313 hasConceptScore W3210293313C31972630 @default.
- W3210293313 hasConceptScore W3210293313C41008148 @default.
- W3210293313 hasConceptScore W3210293313C43521106 @default.
- W3210293313 hasConceptScore W3210293313C75294576 @default.
- W3210293313 hasConceptScore W3210293313C86803240 @default.
- W3210293313 hasConceptScore W3210293313C89600930 @default.
- W3210293313 hasConceptScore W3210293313C98045186 @default.
- W3210293313 hasLocation W32102933131 @default.
- W3210293313 hasOpenAccess W3210293313 @default.
- W3210293313 hasPrimaryLocation W32102933131 @default.
- W3210293313 hasRelatedWork W11142661 @default.
- W3210293313 hasRelatedWork W14128562 @default.
- W3210293313 hasRelatedWork W1850987 @default.
- W3210293313 hasRelatedWork W2233117 @default.
- W3210293313 hasRelatedWork W2747328 @default.
- W3210293313 hasRelatedWork W274842 @default.
- W3210293313 hasRelatedWork W4262719 @default.
- W3210293313 hasRelatedWork W4412456 @default.
- W3210293313 hasRelatedWork W6930659 @default.
- W3210293313 hasRelatedWork W9952751 @default.
- W3210293313 isParatext "false" @default.
- W3210293313 isRetracted "false" @default.
- W3210293313 magId "3210293313" @default.
- W3210293313 workType "book-chapter" @default.