Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210347991> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3210347991 abstract "Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste, it is of prime importance to understand the interaction mechanisms between the geological matrix, Callovo-Oxfordian clay rock (COx) and metallic iron, from the package overpack. In order to evidence the individual role of each clay component entering in the mineralogy of the COx, interactions between metallic iron and pure clays (smectites, illite and kaolinite) were first conducted. To investigate the role of the other minerals, the reactivity of COx, COx clay fraction (COxCF) and mixtures between COxCF and quartz, calcite or pyrite, was studied. Clays and additional minerals were put in contact with powder metallic iron with a weight ratio iron:clay fixed at 1:3 and a clay:solution ratio of 1:20. Proportions of non-clay minerals were deduced from the average COx composition: 50% clays, 24.5% quartz, 24.5% calcite and 1% pyrite. Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L{sup -1}, CaCl{sub 2} 0.04 M.L{sup -1}) in Parr reactors for durations of one, three or nine months. After reaction, solid and liquid phases were separated by centrifugation and characterized by classical techniques combining chemical analyses (liquid analyses, transmission electron microscopy combined with Energy Dispersive of X-rays spectroscopy TEM-EDS), mineralogical (X-ray diffraction), spectroscopic ({sup 57}Fe Moessbauer) and morphometric techniques (TEM, scanning electron microscopy and N{sub 2} adsorption). For COx, COxCF and all the pure clay phases, major evolutions were observed during the first month, which shows that the oxidation of metallic iron is rapid in our experimental conditions. Release of iron cations in solution, pH increase (8-10) and Eh decrease (reductive conditions) are responsible for the partial dissolution of initial clay phases. Released iron is involved in the crystallization of Fe-serpentines, berthierine or odinite mainly or precipitates under the form of magnetite in low amount. Even if COx-iron and COxCF-iron interactions appear somehow similar, significant differences can be noticed in both the liquid and solid compartments of the reaction products. As far as solutions are concerned, pH is lower and Eh higher for COx compared with COxCF. In the solid phase, after 9 months of reaction, metallic iron is totally consumed in COx whereas it is still present for COxCF. In parallel, the formation of magnetite is negligible for COx. Upon reaction, the Al:Si ratio decreases in COx clay particles whereas it remains stable for COxCF. Finally, the evolution of specific surface areas (SSA) with reaction time is significantly different as an increase in SSA is observed for COx in contrast with a decrease for COxCF. The addition of either calcite or pyrite to COxCF does not significantly influence its interaction with iron. In contrast, the addition of quartz to COxCF leads to a pH decrease and an Eh increase. It also results in the quasi-complete absence of magnetite, a decrease of Al:Si ratio in clay particles and an increase in SSA. Upon quartz addition COxCF almost behaves as COx with regard to interactions with iron. Such a trend can be assigned to the partial dissolution of quartz, that provides additional silica for the precipitation of Fe-serpentines. As a conclusion, the main differences between COx-iron and COxCF-iron interactions can thus be explained by the presence and reactivity of quartz which modify the reaction pathway and products. (authors)" @default.
- W3210347991 created "2021-11-08" @default.
- W3210347991 creator A5008632654 @default.
- W3210347991 creator A5024808382 @default.
- W3210347991 creator A5066060156 @default.
- W3210347991 creator A5071735219 @default.
- W3210347991 creator A5091530085 @default.
- W3210347991 date "2012-10-15" @default.
- W3210347991 modified "2023-09-27" @default.
- W3210347991 title "Influence of non-clay minerals on the interaction between metallic iron and Callovo-Oxfordian clay fraction" @default.
- W3210347991 hasPublicationYear "2012" @default.
- W3210347991 type Work @default.
- W3210347991 sameAs 3210347991 @default.
- W3210347991 citedByCount "0" @default.
- W3210347991 crossrefType "journal-article" @default.
- W3210347991 hasAuthorship W3210347991A5008632654 @default.
- W3210347991 hasAuthorship W3210347991A5024808382 @default.
- W3210347991 hasAuthorship W3210347991A5066060156 @default.
- W3210347991 hasAuthorship W3210347991A5071735219 @default.
- W3210347991 hasAuthorship W3210347991A5091530085 @default.
- W3210347991 hasConcept C127313418 @default.
- W3210347991 hasConcept C151730666 @default.
- W3210347991 hasConcept C178790620 @default.
- W3210347991 hasConcept C185592680 @default.
- W3210347991 hasConcept C191897082 @default.
- W3210347991 hasConcept C192562407 @default.
- W3210347991 hasConcept C199289684 @default.
- W3210347991 hasConcept C2776062231 @default.
- W3210347991 hasConcept C2776432453 @default.
- W3210347991 hasConcept C2777844515 @default.
- W3210347991 hasConcept C2779343474 @default.
- W3210347991 hasConcept C2779429093 @default.
- W3210347991 hasConcept C2779870107 @default.
- W3210347991 hasConcept C2779899878 @default.
- W3210347991 hasConcept C2780191791 @default.
- W3210347991 hasConcept C40212044 @default.
- W3210347991 hasConcept C544153396 @default.
- W3210347991 hasConceptScore W3210347991C127313418 @default.
- W3210347991 hasConceptScore W3210347991C151730666 @default.
- W3210347991 hasConceptScore W3210347991C178790620 @default.
- W3210347991 hasConceptScore W3210347991C185592680 @default.
- W3210347991 hasConceptScore W3210347991C191897082 @default.
- W3210347991 hasConceptScore W3210347991C192562407 @default.
- W3210347991 hasConceptScore W3210347991C199289684 @default.
- W3210347991 hasConceptScore W3210347991C2776062231 @default.
- W3210347991 hasConceptScore W3210347991C2776432453 @default.
- W3210347991 hasConceptScore W3210347991C2777844515 @default.
- W3210347991 hasConceptScore W3210347991C2779343474 @default.
- W3210347991 hasConceptScore W3210347991C2779429093 @default.
- W3210347991 hasConceptScore W3210347991C2779870107 @default.
- W3210347991 hasConceptScore W3210347991C2779899878 @default.
- W3210347991 hasConceptScore W3210347991C2780191791 @default.
- W3210347991 hasConceptScore W3210347991C40212044 @default.
- W3210347991 hasConceptScore W3210347991C544153396 @default.
- W3210347991 hasLocation W32103479911 @default.
- W3210347991 hasOpenAccess W3210347991 @default.
- W3210347991 hasPrimaryLocation W32103479911 @default.
- W3210347991 hasRelatedWork W1250008802 @default.
- W3210347991 hasRelatedWork W1973616986 @default.
- W3210347991 hasRelatedWork W2003956264 @default.
- W3210347991 hasRelatedWork W2044674001 @default.
- W3210347991 hasRelatedWork W2052283358 @default.
- W3210347991 hasRelatedWork W2067709435 @default.
- W3210347991 hasRelatedWork W2073886120 @default.
- W3210347991 hasRelatedWork W2082584843 @default.
- W3210347991 hasRelatedWork W2186208187 @default.
- W3210347991 hasRelatedWork W2312510150 @default.
- W3210347991 hasRelatedWork W2334540651 @default.
- W3210347991 hasRelatedWork W254966013 @default.
- W3210347991 hasRelatedWork W2593154602 @default.
- W3210347991 hasRelatedWork W2774296961 @default.
- W3210347991 hasRelatedWork W2883884931 @default.
- W3210347991 hasRelatedWork W2892988728 @default.
- W3210347991 hasRelatedWork W2903935497 @default.
- W3210347991 hasRelatedWork W3016467831 @default.
- W3210347991 hasRelatedWork W3194701115 @default.
- W3210347991 hasRelatedWork W36438801 @default.
- W3210347991 isParatext "false" @default.
- W3210347991 isRetracted "false" @default.
- W3210347991 magId "3210347991" @default.
- W3210347991 workType "article" @default.