Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210357138> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3210357138 abstract "Coins have become essential to our daily lives. As a legal tender, identifying, validating, classifying, and sorting coins is a complex process. In essence, automated coin detectors should identify deteriorated or older coins and distinguish between genuine and fake coins. Nonetheless, we identified limited literature examining different Machine Learning (ML) approaches for detecting Malaysian coins. This study investigates machine learning approaches and identifies the most efficient and accurate for Malaysian coin recognition. The model was trained on 311 images of coins and classified into four object categories: 5, 10, 20, and 50 cents. Six classifiers are used to test the training model. For the Grey-Level Co-occurrence Matrix (GLCM) feature extraction, AdaBoost classifiers were the most accurate, whereas K-Nearest Neighbors (KNN) classifiers were the least accurate. Moreover, the Artificial Neural Networks (ANN) classifier had the highest accuracy in the Histogram of Oriented Gradients (HOG) feature, while the Linear Discriminant Analysis (LDA) classifier had the lowest. The study findings and future directions are discussed." @default.
- W3210357138 created "2021-11-08" @default.
- W3210357138 creator A5004361200 @default.
- W3210357138 creator A5012795809 @default.
- W3210357138 creator A5027968648 @default.
- W3210357138 creator A5030629189 @default.
- W3210357138 creator A5032366070 @default.
- W3210357138 creator A5041854441 @default.
- W3210357138 creator A5088514441 @default.
- W3210357138 date "2021-09-08" @default.
- W3210357138 modified "2023-09-25" @default.
- W3210357138 title "Malaysian Coins Recognition Using Machine Learning Methods" @default.
- W3210357138 cites W1542931642 @default.
- W3210357138 cites W2771013887 @default.
- W3210357138 cites W2900744972 @default.
- W3210357138 cites W295909711 @default.
- W3210357138 cites W2983005688 @default.
- W3210357138 cites W2997192890 @default.
- W3210357138 cites W3086514866 @default.
- W3210357138 cites W3099862232 @default.
- W3210357138 cites W3100017393 @default.
- W3210357138 cites W3135646433 @default.
- W3210357138 cites W3154197014 @default.
- W3210357138 cites W3159345252 @default.
- W3210357138 doi "https://doi.org/10.1109/aidas53897.2021.9574175" @default.
- W3210357138 hasPublicationYear "2021" @default.
- W3210357138 type Work @default.
- W3210357138 sameAs 3210357138 @default.
- W3210357138 citedByCount "0" @default.
- W3210357138 crossrefType "proceedings-article" @default.
- W3210357138 hasAuthorship W3210357138A5004361200 @default.
- W3210357138 hasAuthorship W3210357138A5012795809 @default.
- W3210357138 hasAuthorship W3210357138A5027968648 @default.
- W3210357138 hasAuthorship W3210357138A5030629189 @default.
- W3210357138 hasAuthorship W3210357138A5032366070 @default.
- W3210357138 hasAuthorship W3210357138A5041854441 @default.
- W3210357138 hasAuthorship W3210357138A5088514441 @default.
- W3210357138 hasConcept C115961682 @default.
- W3210357138 hasConcept C119857082 @default.
- W3210357138 hasConcept C12267149 @default.
- W3210357138 hasConcept C141404830 @default.
- W3210357138 hasConcept C153180895 @default.
- W3210357138 hasConcept C154945302 @default.
- W3210357138 hasConcept C17426736 @default.
- W3210357138 hasConcept C41008148 @default.
- W3210357138 hasConcept C52622490 @default.
- W3210357138 hasConcept C53533937 @default.
- W3210357138 hasConcept C69738355 @default.
- W3210357138 hasConcept C95623464 @default.
- W3210357138 hasConceptScore W3210357138C115961682 @default.
- W3210357138 hasConceptScore W3210357138C119857082 @default.
- W3210357138 hasConceptScore W3210357138C12267149 @default.
- W3210357138 hasConceptScore W3210357138C141404830 @default.
- W3210357138 hasConceptScore W3210357138C153180895 @default.
- W3210357138 hasConceptScore W3210357138C154945302 @default.
- W3210357138 hasConceptScore W3210357138C17426736 @default.
- W3210357138 hasConceptScore W3210357138C41008148 @default.
- W3210357138 hasConceptScore W3210357138C52622490 @default.
- W3210357138 hasConceptScore W3210357138C53533937 @default.
- W3210357138 hasConceptScore W3210357138C69738355 @default.
- W3210357138 hasConceptScore W3210357138C95623464 @default.
- W3210357138 hasFunder F4320325210 @default.
- W3210357138 hasLocation W32103571381 @default.
- W3210357138 hasOpenAccess W3210357138 @default.
- W3210357138 hasPrimaryLocation W32103571381 @default.
- W3210357138 hasRelatedWork W2087874231 @default.
- W3210357138 hasRelatedWork W2125629257 @default.
- W3210357138 hasRelatedWork W2188464267 @default.
- W3210357138 hasRelatedWork W2363530787 @default.
- W3210357138 hasRelatedWork W2550539038 @default.
- W3210357138 hasRelatedWork W3004377704 @default.
- W3210357138 hasRelatedWork W3101572448 @default.
- W3210357138 hasRelatedWork W2136567439 @default.
- W3210357138 hasRelatedWork W2626727192 @default.
- W3210357138 hasRelatedWork W3127217315 @default.
- W3210357138 isParatext "false" @default.
- W3210357138 isRetracted "false" @default.
- W3210357138 magId "3210357138" @default.
- W3210357138 workType "article" @default.