Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210361010> ?p ?o ?g. }
- W3210361010 endingPage "100462" @default.
- W3210361010 startingPage "100462" @default.
- W3210361010 abstract "Intrusions in computer networks have increased significantly in the last decade, due in part to a profitable underground cyber-crime economy and the availability of sophisticated tools for launching such intrusions. Researchers in industry and academia have been proposing methods and building systems for detecting and preventing such security breaches for more than four decades. Solutions proposed for dealing with network intrusions can be broadly classified as signature-based and anomaly-based. Signature-based intrusion detection systems look for patterns that match known attacks. On the other hand, anomaly-based intrusion detection systems develop a model for distinguishing legitimate users’ behavior from that of malicious users’ and hence are capable of detecting unknown attacks. One of the approaches used to classify legitimate and anomalous behavior is to use Machine Learning (ML) techniques. Several intrusion detection systems based on ML techniques have been proposed in the literature. In this paper, we present a comprehensive critical survey of ML-based intrusion detection approaches presented in the literature in the last ten years. This survey would serve as a supplement to other general surveys on intrusion detection as well as a reference to recent work done in the area for researchers working in ML-based intrusion detection systems. We also discuss some open issues that need to be addressed." @default.
- W3210361010 created "2021-11-08" @default.
- W3210361010 creator A5050631988 @default.
- W3210361010 creator A5070543729 @default.
- W3210361010 date "2021-12-01" @default.
- W3210361010 modified "2023-10-16" @default.
- W3210361010 title "Intrusion detection based on Machine Learning techniques in computer networks" @default.
- W3210361010 cites W1196375415 @default.
- W3210361010 cites W1772700132 @default.
- W3210361010 cites W1964940342 @default.
- W3210361010 cites W1984438447 @default.
- W3210361010 cites W1993885071 @default.
- W3210361010 cites W1993913559 @default.
- W3210361010 cites W2004651379 @default.
- W3210361010 cites W2012568697 @default.
- W3210361010 cites W2022686119 @default.
- W3210361010 cites W2026923346 @default.
- W3210361010 cites W2032620230 @default.
- W3210361010 cites W2053724458 @default.
- W3210361010 cites W2111072639 @default.
- W3210361010 cites W2122111042 @default.
- W3210361010 cites W2137983211 @default.
- W3210361010 cites W2148143831 @default.
- W3210361010 cites W2150093579 @default.
- W3210361010 cites W2156612354 @default.
- W3210361010 cites W2157595416 @default.
- W3210361010 cites W2158054309 @default.
- W3210361010 cites W2160841769 @default.
- W3210361010 cites W2161630727 @default.
- W3210361010 cites W2243397390 @default.
- W3210361010 cites W2284098035 @default.
- W3210361010 cites W2295124130 @default.
- W3210361010 cites W2334853001 @default.
- W3210361010 cites W2342408547 @default.
- W3210361010 cites W2609225916 @default.
- W3210361010 cites W2762776925 @default.
- W3210361010 cites W2779585691 @default.
- W3210361010 cites W2783741806 @default.
- W3210361010 cites W2791319131 @default.
- W3210361010 cites W2794786524 @default.
- W3210361010 cites W2803414046 @default.
- W3210361010 cites W2806697149 @default.
- W3210361010 cites W2853623529 @default.
- W3210361010 cites W2870670057 @default.
- W3210361010 cites W2888279577 @default.
- W3210361010 cites W2899653275 @default.
- W3210361010 cites W2911171945 @default.
- W3210361010 cites W2911505293 @default.
- W3210361010 cites W2921134108 @default.
- W3210361010 cites W2926701059 @default.
- W3210361010 cites W2935633365 @default.
- W3210361010 cites W2945012921 @default.
- W3210361010 cites W2950250245 @default.
- W3210361010 cites W2958285686 @default.
- W3210361010 cites W2963073179 @default.
- W3210361010 cites W2963748489 @default.
- W3210361010 cites W2982255332 @default.
- W3210361010 cites W2988790801 @default.
- W3210361010 cites W2995229062 @default.
- W3210361010 cites W3010704846 @default.
- W3210361010 cites W3016607949 @default.
- W3210361010 cites W3020687048 @default.
- W3210361010 cites W3168793901 @default.
- W3210361010 cites W4236137412 @default.
- W3210361010 cites W4289236186 @default.
- W3210361010 doi "https://doi.org/10.1016/j.iot.2021.100462" @default.
- W3210361010 hasPublicationYear "2021" @default.
- W3210361010 type Work @default.
- W3210361010 sameAs 3210361010 @default.
- W3210361010 citedByCount "29" @default.
- W3210361010 countsByYear W32103610102021 @default.
- W3210361010 countsByYear W32103610102022 @default.
- W3210361010 countsByYear W32103610102023 @default.
- W3210361010 crossrefType "journal-article" @default.
- W3210361010 hasAuthorship W3210361010A5050631988 @default.
- W3210361010 hasAuthorship W3210361010A5070543729 @default.
- W3210361010 hasConcept C119857082 @default.
- W3210361010 hasConcept C124101348 @default.
- W3210361010 hasConcept C127313418 @default.
- W3210361010 hasConcept C137524506 @default.
- W3210361010 hasConcept C154945302 @default.
- W3210361010 hasConcept C158251709 @default.
- W3210361010 hasConcept C17409809 @default.
- W3210361010 hasConcept C182590292 @default.
- W3210361010 hasConcept C2524010 @default.
- W3210361010 hasConcept C27061796 @default.
- W3210361010 hasConcept C2779696439 @default.
- W3210361010 hasConcept C33923547 @default.
- W3210361010 hasConcept C35525427 @default.
- W3210361010 hasConcept C38652104 @default.
- W3210361010 hasConcept C41008148 @default.
- W3210361010 hasConcept C739882 @default.
- W3210361010 hasConceptScore W3210361010C119857082 @default.
- W3210361010 hasConceptScore W3210361010C124101348 @default.
- W3210361010 hasConceptScore W3210361010C127313418 @default.
- W3210361010 hasConceptScore W3210361010C137524506 @default.
- W3210361010 hasConceptScore W3210361010C154945302 @default.
- W3210361010 hasConceptScore W3210361010C158251709 @default.