Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210361503> ?p ?o ?g. }
- W3210361503 abstract "We present PyTorch Geometric Temporal, a deep learning framework combining state-of-the-art machine learning algorithms for neural spatiotemporal signal processing. The main goal of the library is to make temporal geometric deep learning available for researchers and machine learning practitioners in a unified easy-to-use framework. PyTorch Geometric Temporal was created with foundations on existing libraries in the PyTorch eco-system, streamlined neural network layer definitions, temporal snapshot generators for batching, and integrated benchmark datasets. These features are illustrated with a tutorial-like case study. Experiments demonstrate the predictive performance of the models implemented in the library on real-world problems such as epidemiological forecasting, ride-hail demand prediction, and web traffic management. Our sensitivity analysis of runtime shows that the framework can potentially operate on web-scale datasets with rich temporal features and spatial structure." @default.
- W3210361503 created "2021-11-08" @default.
- W3210361503 creator A5006619674 @default.
- W3210361503 creator A5007876176 @default.
- W3210361503 creator A5049487114 @default.
- W3210361503 creator A5050444443 @default.
- W3210361503 creator A5062857754 @default.
- W3210361503 creator A5064754627 @default.
- W3210361503 creator A5073085630 @default.
- W3210361503 creator A5076339802 @default.
- W3210361503 creator A5083139588 @default.
- W3210361503 creator A5088676221 @default.
- W3210361503 creator A5090333051 @default.
- W3210361503 date "2021-10-26" @default.
- W3210361503 modified "2023-10-18" @default.
- W3210361503 title "PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models" @default.
- W3210361503 cites W1902237438 @default.
- W3210361503 cites W2064675550 @default.
- W3210361503 cites W2146292423 @default.
- W3210361503 cites W2157331557 @default.
- W3210361503 cites W2402144811 @default.
- W3210361503 cites W2885961799 @default.
- W3210361503 cites W2901504064 @default.
- W3210361503 cites W2903871660 @default.
- W3210361503 cites W2944833253 @default.
- W3210361503 cites W2948058585 @default.
- W3210361503 cites W2952179887 @default.
- W3210361503 cites W2964571482 @default.
- W3210361503 cites W2969696968 @default.
- W3210361503 cites W2997848713 @default.
- W3210361503 cites W2998313947 @default.
- W3210361503 cites W3000019468 @default.
- W3210361503 cites W3023884480 @default.
- W3210361503 cites W3036125691 @default.
- W3210361503 cites W3039500550 @default.
- W3210361503 cites W3080253043 @default.
- W3210361503 cites W3093943311 @default.
- W3210361503 cites W3102446989 @default.
- W3210361503 cites W3112327940 @default.
- W3210361503 doi "https://doi.org/10.1145/3459637.3482014" @default.
- W3210361503 hasPublicationYear "2021" @default.
- W3210361503 type Work @default.
- W3210361503 sameAs 3210361503 @default.
- W3210361503 citedByCount "33" @default.
- W3210361503 countsByYear W32103615032021 @default.
- W3210361503 countsByYear W32103615032022 @default.
- W3210361503 countsByYear W32103615032023 @default.
- W3210361503 crossrefType "proceedings-article" @default.
- W3210361503 hasAuthorship W3210361503A5006619674 @default.
- W3210361503 hasAuthorship W3210361503A5007876176 @default.
- W3210361503 hasAuthorship W3210361503A5049487114 @default.
- W3210361503 hasAuthorship W3210361503A5050444443 @default.
- W3210361503 hasAuthorship W3210361503A5062857754 @default.
- W3210361503 hasAuthorship W3210361503A5064754627 @default.
- W3210361503 hasAuthorship W3210361503A5073085630 @default.
- W3210361503 hasAuthorship W3210361503A5076339802 @default.
- W3210361503 hasAuthorship W3210361503A5083139588 @default.
- W3210361503 hasAuthorship W3210361503A5088676221 @default.
- W3210361503 hasAuthorship W3210361503A5090333051 @default.
- W3210361503 hasBestOaLocation W32103615032 @default.
- W3210361503 hasConcept C108583219 @default.
- W3210361503 hasConcept C119857082 @default.
- W3210361503 hasConcept C124101348 @default.
- W3210361503 hasConcept C13280743 @default.
- W3210361503 hasConcept C154945302 @default.
- W3210361503 hasConcept C185798385 @default.
- W3210361503 hasConcept C205649164 @default.
- W3210361503 hasConcept C41008148 @default.
- W3210361503 hasConcept C50644808 @default.
- W3210361503 hasConcept C55282118 @default.
- W3210361503 hasConcept C77088390 @default.
- W3210361503 hasConcept C77277458 @default.
- W3210361503 hasConceptScore W3210361503C108583219 @default.
- W3210361503 hasConceptScore W3210361503C119857082 @default.
- W3210361503 hasConceptScore W3210361503C124101348 @default.
- W3210361503 hasConceptScore W3210361503C13280743 @default.
- W3210361503 hasConceptScore W3210361503C154945302 @default.
- W3210361503 hasConceptScore W3210361503C185798385 @default.
- W3210361503 hasConceptScore W3210361503C205649164 @default.
- W3210361503 hasConceptScore W3210361503C41008148 @default.
- W3210361503 hasConceptScore W3210361503C50644808 @default.
- W3210361503 hasConceptScore W3210361503C55282118 @default.
- W3210361503 hasConceptScore W3210361503C77088390 @default.
- W3210361503 hasConceptScore W3210361503C77277458 @default.
- W3210361503 hasLocation W32103615031 @default.
- W3210361503 hasLocation W32103615032 @default.
- W3210361503 hasLocation W32103615033 @default.
- W3210361503 hasOpenAccess W3210361503 @default.
- W3210361503 hasPrimaryLocation W32103615031 @default.
- W3210361503 hasRelatedWork W2922457425 @default.
- W3210361503 hasRelatedWork W3014300295 @default.
- W3210361503 hasRelatedWork W3164822677 @default.
- W3210361503 hasRelatedWork W4223943233 @default.
- W3210361503 hasRelatedWork W4225161397 @default.
- W3210361503 hasRelatedWork W4250304930 @default.
- W3210361503 hasRelatedWork W4309045103 @default.
- W3210361503 hasRelatedWork W4312200629 @default.
- W3210361503 hasRelatedWork W4360585206 @default.
- W3210361503 hasRelatedWork W4364306694 @default.
- W3210361503 isParatext "false" @default.