Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210367070> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3210367070 abstract "Organizations invest heavily during the installation of pipeline facilities which spans across extensive geographical linkage. Also, the issue of pipeline protection and safety must be taken into consideration to have a free flow of oil and gas at inbound and outbound locations. This has necessitated the need for routine inspection and monitoring of pipelines for structural integrity, continued safe operations, and also to monitor intruders/potential trespassers at such locations. This research is focused on the elucidation of a modular unmanned aerial vehicle (UAV) integrated with deep learning algorithms for monitoring and security response to obtain very useful information around the oil and gas facility. The deep learning model employed in this study had training, validation and testing accuracies of 88.3%, 87.5%, and 83.3% respectively. Also, training and validation losses of 0.3583 and 0.3649 were obtained. The suggested integrated UAV has a low maintenance requirement, high endurance, and is cost-effective. It has a superior advantage over the manned aerial vehicles (MAV) currently in use since safety is greatly improved, the cost is reduced, adequate information is obtained and communication is enhanced." @default.
- W3210367070 created "2021-11-08" @default.
- W3210367070 creator A5047654500 @default.
- W3210367070 creator A5057227579 @default.
- W3210367070 creator A5062342887 @default.
- W3210367070 creator A5083985681 @default.
- W3210367070 date "2021-12-09" @default.
- W3210367070 modified "2023-10-16" @default.
- W3210367070 title "Integrating Unmanned Aerial Vehicle and Deep Learning Algorithm for Pipeline Monitoring and Inspection in the Oil and Gas Sector" @default.
- W3210367070 cites W1851459058 @default.
- W3210367070 cites W2169677720 @default.
- W3210367070 cites W2587548043 @default.
- W3210367070 cites W2751354647 @default.
- W3210367070 cites W2791521493 @default.
- W3210367070 cites W2900341665 @default.
- W3210367070 cites W2946053491 @default.
- W3210367070 cites W2988503405 @default.
- W3210367070 cites W3082594717 @default.
- W3210367070 cites W3090027660 @default.
- W3210367070 cites W3176291700 @default.
- W3210367070 cites W3216720137 @default.
- W3210367070 cites W4214655292 @default.
- W3210367070 cites W560455915 @default.
- W3210367070 doi "https://doi.org/10.1145/3487923.3487924" @default.
- W3210367070 hasPublicationYear "2021" @default.
- W3210367070 type Work @default.
- W3210367070 sameAs 3210367070 @default.
- W3210367070 citedByCount "0" @default.
- W3210367070 crossrefType "proceedings-article" @default.
- W3210367070 hasAuthorship W3210367070A5047654500 @default.
- W3210367070 hasAuthorship W3210367070A5057227579 @default.
- W3210367070 hasAuthorship W3210367070A5062342887 @default.
- W3210367070 hasAuthorship W3210367070A5083985681 @default.
- W3210367070 hasBestOaLocation W32103670701 @default.
- W3210367070 hasConcept C101468663 @default.
- W3210367070 hasConcept C108583219 @default.
- W3210367070 hasConcept C111919701 @default.
- W3210367070 hasConcept C127413603 @default.
- W3210367070 hasConcept C154945302 @default.
- W3210367070 hasConcept C175309249 @default.
- W3210367070 hasConcept C199360897 @default.
- W3210367070 hasConcept C39432304 @default.
- W3210367070 hasConcept C41008148 @default.
- W3210367070 hasConcept C43521106 @default.
- W3210367070 hasConcept C78519656 @default.
- W3210367070 hasConceptScore W3210367070C101468663 @default.
- W3210367070 hasConceptScore W3210367070C108583219 @default.
- W3210367070 hasConceptScore W3210367070C111919701 @default.
- W3210367070 hasConceptScore W3210367070C127413603 @default.
- W3210367070 hasConceptScore W3210367070C154945302 @default.
- W3210367070 hasConceptScore W3210367070C175309249 @default.
- W3210367070 hasConceptScore W3210367070C199360897 @default.
- W3210367070 hasConceptScore W3210367070C39432304 @default.
- W3210367070 hasConceptScore W3210367070C41008148 @default.
- W3210367070 hasConceptScore W3210367070C43521106 @default.
- W3210367070 hasConceptScore W3210367070C78519656 @default.
- W3210367070 hasLocation W32103670701 @default.
- W3210367070 hasOpenAccess W3210367070 @default.
- W3210367070 hasPrimaryLocation W32103670701 @default.
- W3210367070 hasRelatedWork W2120762159 @default.
- W3210367070 hasRelatedWork W2899084033 @default.
- W3210367070 hasRelatedWork W3022824259 @default.
- W3210367070 hasRelatedWork W3025626553 @default.
- W3210367070 hasRelatedWork W3089054406 @default.
- W3210367070 hasRelatedWork W3090132503 @default.
- W3210367070 hasRelatedWork W4221003081 @default.
- W3210367070 hasRelatedWork W4234341011 @default.
- W3210367070 hasRelatedWork W4286783850 @default.
- W3210367070 hasRelatedWork W4308707013 @default.
- W3210367070 isParatext "false" @default.
- W3210367070 isRetracted "false" @default.
- W3210367070 magId "3210367070" @default.
- W3210367070 workType "article" @default.