Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210405915> ?p ?o ?g. }
- W3210405915 endingPage "1983" @default.
- W3210405915 startingPage "1983" @default.
- W3210405915 abstract "Accurate assessment of renal histopathology is crucial for the clinical management of patients with lupus nephritis (LN). However, the current classification system has poor interpathologist agreement. This paper proposes a deep convolutional neural network (CNN)-based system that detects and classifies glomerular pathological findings in LN. A dataset of 349 renal biopsy whole-slide images (WSIs) (163 patients with LN, periodic acid-Schiff stain, 3906 glomeruli) annotated by three expert nephropathologists was used. The CNN models YOLOv4 and VGG16 were employed to localise the glomeruli and classify glomerular lesions (slight/severe impairments or sclerotic lesions). An additional 321 unannotated WSIs from 161 patients were used for performance evaluation at the per-patient kidney level. The proposed model achieved an accuracy of 0.951 and Cohen's kappa of 0.932 (95% CI 0.915-0.949) for the entire test set for classifying the glomerular lesions. For multiclass detection at the glomerular level, the mean average precision of the CNN was 0.807, with 'slight' and 'severe' glomerular lesions being easily identified (F1: 0.924 and 0.952, respectively). At the per-patient kidney level, the model achieved a high agreement with nephropathologist (linear weighted kappa: 0.855, 95% CI: 0.795-0.916, p < 0.001; quadratic weighted kappa: 0.906, 95% CI: 0.873-0.938, p < 0.001). The results suggest that deep learning is a feasible assistive tool for the objective and automatic assessment of pathological LN lesions." @default.
- W3210405915 created "2021-11-08" @default.
- W3210405915 creator A5000995272 @default.
- W3210405915 creator A5007531288 @default.
- W3210405915 creator A5018159055 @default.
- W3210405915 creator A5050941029 @default.
- W3210405915 creator A5074193127 @default.
- W3210405915 creator A5075744266 @default.
- W3210405915 creator A5081226638 @default.
- W3210405915 creator A5084175524 @default.
- W3210405915 date "2021-10-26" @default.
- W3210405915 modified "2023-10-17" @default.
- W3210405915 title "Deep Learning-Based Artificial Intelligence System for Automatic Assessment of Glomerular Pathological Findings in Lupus Nephritis" @default.
- W3210405915 cites W1998210457 @default.
- W3210405915 cites W2044471513 @default.
- W3210405915 cites W2054219598 @default.
- W3210405915 cites W2119837784 @default.
- W3210405915 cites W2138889351 @default.
- W3210405915 cites W2772723798 @default.
- W3210405915 cites W2786833650 @default.
- W3210405915 cites W2801040297 @default.
- W3210405915 cites W2810730996 @default.
- W3210405915 cites W2943370629 @default.
- W3210405915 cites W2950968959 @default.
- W3210405915 cites W2952003460 @default.
- W3210405915 cites W2952527443 @default.
- W3210405915 cites W2956228567 @default.
- W3210405915 cites W2967444033 @default.
- W3210405915 cites W2971487518 @default.
- W3210405915 cites W2972214324 @default.
- W3210405915 cites W2994910508 @default.
- W3210405915 cites W2999091210 @default.
- W3210405915 cites W3000897208 @default.
- W3210405915 cites W3012553260 @default.
- W3210405915 cites W3013081823 @default.
- W3210405915 cites W3035564257 @default.
- W3210405915 cites W3041873840 @default.
- W3210405915 cites W3080677331 @default.
- W3210405915 cites W3087058754 @default.
- W3210405915 cites W3087619578 @default.
- W3210405915 cites W3103663607 @default.
- W3210405915 cites W3111410893 @default.
- W3210405915 cites W3122814419 @default.
- W3210405915 cites W3126783352 @default.
- W3210405915 cites W3127620769 @default.
- W3210405915 cites W3136070377 @default.
- W3210405915 cites W3160261825 @default.
- W3210405915 cites W3191020254 @default.
- W3210405915 doi "https://doi.org/10.3390/diagnostics11111983" @default.
- W3210405915 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8621095" @default.
- W3210405915 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34829330" @default.
- W3210405915 hasPublicationYear "2021" @default.
- W3210405915 type Work @default.
- W3210405915 sameAs 3210405915 @default.
- W3210405915 citedByCount "10" @default.
- W3210405915 countsByYear W32104059152022 @default.
- W3210405915 countsByYear W32104059152023 @default.
- W3210405915 crossrefType "journal-article" @default.
- W3210405915 hasAuthorship W3210405915A5000995272 @default.
- W3210405915 hasAuthorship W3210405915A5007531288 @default.
- W3210405915 hasAuthorship W3210405915A5018159055 @default.
- W3210405915 hasAuthorship W3210405915A5050941029 @default.
- W3210405915 hasAuthorship W3210405915A5074193127 @default.
- W3210405915 hasAuthorship W3210405915A5075744266 @default.
- W3210405915 hasAuthorship W3210405915A5081226638 @default.
- W3210405915 hasAuthorship W3210405915A5084175524 @default.
- W3210405915 hasBestOaLocation W32104059151 @default.
- W3210405915 hasConcept C119857082 @default.
- W3210405915 hasConcept C126322002 @default.
- W3210405915 hasConcept C142724271 @default.
- W3210405915 hasConcept C154945302 @default.
- W3210405915 hasConcept C159641895 @default.
- W3210405915 hasConcept C163864269 @default.
- W3210405915 hasConcept C207886595 @default.
- W3210405915 hasConcept C2524010 @default.
- W3210405915 hasConcept C2778724333 @default.
- W3210405915 hasConcept C2779134260 @default.
- W3210405915 hasConcept C2779912601 @default.
- W3210405915 hasConcept C2780091579 @default.
- W3210405915 hasConcept C33923547 @default.
- W3210405915 hasConcept C41008148 @default.
- W3210405915 hasConcept C544855455 @default.
- W3210405915 hasConcept C71924100 @default.
- W3210405915 hasConcept C81363708 @default.
- W3210405915 hasConceptScore W3210405915C119857082 @default.
- W3210405915 hasConceptScore W3210405915C126322002 @default.
- W3210405915 hasConceptScore W3210405915C142724271 @default.
- W3210405915 hasConceptScore W3210405915C154945302 @default.
- W3210405915 hasConceptScore W3210405915C159641895 @default.
- W3210405915 hasConceptScore W3210405915C163864269 @default.
- W3210405915 hasConceptScore W3210405915C207886595 @default.
- W3210405915 hasConceptScore W3210405915C2524010 @default.
- W3210405915 hasConceptScore W3210405915C2778724333 @default.
- W3210405915 hasConceptScore W3210405915C2779134260 @default.
- W3210405915 hasConceptScore W3210405915C2779912601 @default.
- W3210405915 hasConceptScore W3210405915C2780091579 @default.
- W3210405915 hasConceptScore W3210405915C33923547 @default.
- W3210405915 hasConceptScore W3210405915C41008148 @default.