Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210412078> ?p ?o ?g. }
- W3210412078 abstract "Pathological diagnosis is the gold standard for cancer diagnosis, but it is labor-intensive, in which tasks such as cell detection, classification, and counting are particularly prominent. A common solution for automating these tasks is using nucleus segmentation technology. However, it is hard to train a robust nucleus segmentation model, due to several challenging problems, the nucleus adhesion, stacking, and excessive fusion with the background. Recently, some researchers proposed a series of automatic nucleus segmentation methods based on point annotation, which can significant improve the model performance. Nevertheless, the point annotation needs to be marked by experienced pathologists. In order to take advantage of segmentation methods based on point annotation, further alleviate the manual workload, and make cancer diagnosis more efficient and accurate, it is necessary to develop an automatic nucleus detection algorithm, which can automatically and efficiently locate the position of the nucleus in the pathological image and extract valuable information for pathologists. In this paper, we propose a W-shaped network for automatic nucleus detection. Different from the traditional U-Net based method, mapping the original pathology image to the target mask directly, our proposed method split the detection task into two sub-tasks. The first sub-task maps the original pathology image to the binary mask, then the binary mask is mapped to the density mask in the second sub-task. After the task is split, the task's difficulty is significantly reduced, and the network's overall performance is improved." @default.
- W3210412078 created "2021-11-08" @default.
- W3210412078 creator A5021558236 @default.
- W3210412078 creator A5028988199 @default.
- W3210412078 creator A5030762002 @default.
- W3210412078 creator A5032447166 @default.
- W3210412078 creator A5034440398 @default.
- W3210412078 creator A5060638031 @default.
- W3210412078 date "2021-10-26" @default.
- W3210412078 modified "2023-09-28" @default.
- W3210412078 title "W-Net: A Two-Stage Convolutional Network for Nucleus Detection in Histopathology Image" @default.
- W3210412078 cites W1238092070 @default.
- W3210412078 cites W1686810756 @default.
- W3210412078 cites W1901129140 @default.
- W3210412078 cites W1968615915 @default.
- W3210412078 cites W1989178612 @default.
- W3210412078 cites W2136081195 @default.
- W3210412078 cites W2159551006 @default.
- W3210412078 cites W2171459511 @default.
- W3210412078 cites W2194775991 @default.
- W3210412078 cites W2248620004 @default.
- W3210412078 cites W2312404985 @default.
- W3210412078 cites W2347064614 @default.
- W3210412078 cites W2398921440 @default.
- W3210412078 cites W2738582428 @default.
- W3210412078 cites W2763160469 @default.
- W3210412078 cites W2900936384 @default.
- W3210412078 cites W2955425717 @default.
- W3210412078 cites W2962716568 @default.
- W3210412078 cites W2963072537 @default.
- W3210412078 cites W2964209782 @default.
- W3210412078 cites W3040784645 @default.
- W3210412078 cites W3091692930 @default.
- W3210412078 cites W3155733640 @default.
- W3210412078 cites W3168746150 @default.
- W3210412078 doi "https://doi.org/10.48550/arxiv.2110.13670" @default.
- W3210412078 hasPublicationYear "2021" @default.
- W3210412078 type Work @default.
- W3210412078 sameAs 3210412078 @default.
- W3210412078 citedByCount "0" @default.
- W3210412078 crossrefType "posted-content" @default.
- W3210412078 hasAuthorship W3210412078A5021558236 @default.
- W3210412078 hasAuthorship W3210412078A5028988199 @default.
- W3210412078 hasAuthorship W3210412078A5030762002 @default.
- W3210412078 hasAuthorship W3210412078A5032447166 @default.
- W3210412078 hasAuthorship W3210412078A5034440398 @default.
- W3210412078 hasAuthorship W3210412078A5060638031 @default.
- W3210412078 hasBestOaLocation W32104120781 @default.
- W3210412078 hasConcept C12267149 @default.
- W3210412078 hasConcept C124504099 @default.
- W3210412078 hasConcept C153180895 @default.
- W3210412078 hasConcept C154945302 @default.
- W3210412078 hasConcept C162324750 @default.
- W3210412078 hasConcept C187736073 @default.
- W3210412078 hasConcept C2524010 @default.
- W3210412078 hasConcept C2776321320 @default.
- W3210412078 hasConcept C2780451532 @default.
- W3210412078 hasConcept C2780723820 @default.
- W3210412078 hasConcept C28719098 @default.
- W3210412078 hasConcept C31972630 @default.
- W3210412078 hasConcept C33923547 @default.
- W3210412078 hasConcept C41008148 @default.
- W3210412078 hasConcept C66905080 @default.
- W3210412078 hasConcept C81363708 @default.
- W3210412078 hasConcept C86803240 @default.
- W3210412078 hasConcept C89600930 @default.
- W3210412078 hasConcept C95444343 @default.
- W3210412078 hasConceptScore W3210412078C12267149 @default.
- W3210412078 hasConceptScore W3210412078C124504099 @default.
- W3210412078 hasConceptScore W3210412078C153180895 @default.
- W3210412078 hasConceptScore W3210412078C154945302 @default.
- W3210412078 hasConceptScore W3210412078C162324750 @default.
- W3210412078 hasConceptScore W3210412078C187736073 @default.
- W3210412078 hasConceptScore W3210412078C2524010 @default.
- W3210412078 hasConceptScore W3210412078C2776321320 @default.
- W3210412078 hasConceptScore W3210412078C2780451532 @default.
- W3210412078 hasConceptScore W3210412078C2780723820 @default.
- W3210412078 hasConceptScore W3210412078C28719098 @default.
- W3210412078 hasConceptScore W3210412078C31972630 @default.
- W3210412078 hasConceptScore W3210412078C33923547 @default.
- W3210412078 hasConceptScore W3210412078C41008148 @default.
- W3210412078 hasConceptScore W3210412078C66905080 @default.
- W3210412078 hasConceptScore W3210412078C81363708 @default.
- W3210412078 hasConceptScore W3210412078C86803240 @default.
- W3210412078 hasConceptScore W3210412078C89600930 @default.
- W3210412078 hasConceptScore W3210412078C95444343 @default.
- W3210412078 hasLocation W32104120781 @default.
- W3210412078 hasOpenAccess W3210412078 @default.
- W3210412078 hasPrimaryLocation W32104120781 @default.
- W3210412078 hasRelatedWork W1507266234 @default.
- W3210412078 hasRelatedWork W1669643531 @default.
- W3210412078 hasRelatedWork W2110230079 @default.
- W3210412078 hasRelatedWork W2117664411 @default.
- W3210412078 hasRelatedWork W2117933325 @default.
- W3210412078 hasRelatedWork W2122581818 @default.
- W3210412078 hasRelatedWork W2159066190 @default.
- W3210412078 hasRelatedWork W2549936415 @default.
- W3210412078 hasRelatedWork W2739874619 @default.
- W3210412078 hasRelatedWork W1967061043 @default.
- W3210412078 isParatext "false" @default.