Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210468913> ?p ?o ?g. }
- W3210468913 endingPage "9755" @default.
- W3210468913 startingPage "9755" @default.
- W3210468913 abstract "Automated detection of impurities is in demand for evaluating the quality and safety of human cell-processed therapeutic products in regenerative medicine. Deep learning (DL) is a powerful method for classifying and recognizing images in cell biology, diagnostic medicine, and other fields because it automatically extracts the features from complex cell morphologies. In the present study, we construct prediction models that recognize cancer-cell contamination in continuous long-term (four-day) cell cultures. After dividing the whole dataset into Early- and Late-stage cell images, we found that Late-stage images improved the DL performance. The performance was further improved by optimizing the DL hyperparameters (batch size and learning rate). These findings are first report for the implement of DL-based systems in disease cell-type classification of human cell-processed therapeutic products (hCTPs), that are expected to enable the rapid, automatic classification of induced pluripotent stem cells and other cell treatments for life-threatening or chronic diseases." @default.
- W3210468913 created "2021-11-08" @default.
- W3210468913 creator A5000664500 @default.
- W3210468913 creator A5009565485 @default.
- W3210468913 creator A5057190375 @default.
- W3210468913 creator A5060983001 @default.
- W3210468913 creator A5061331494 @default.
- W3210468913 date "2021-10-19" @default.
- W3210468913 modified "2023-10-16" @default.
- W3210468913 title "Deep Learning-Based In Vitro Detection Method for Cellular Impurities in Human Cell-Processed Therapeutic Products" @default.
- W3210468913 cites W1967467247 @default.
- W3210468913 cites W1979555928 @default.
- W3210468913 cites W2030299494 @default.
- W3210468913 cites W2036061473 @default.
- W3210468913 cites W2064642825 @default.
- W3210468913 cites W2066887344 @default.
- W3210468913 cites W2072899346 @default.
- W3210468913 cites W2079433142 @default.
- W3210468913 cites W2095228235 @default.
- W3210468913 cites W2103110468 @default.
- W3210468913 cites W2113001012 @default.
- W3210468913 cites W2133844149 @default.
- W3210468913 cites W2140099710 @default.
- W3210468913 cites W2149033728 @default.
- W3210468913 cites W2164829386 @default.
- W3210468913 cites W2404335621 @default.
- W3210468913 cites W2431877695 @default.
- W3210468913 cites W2473325256 @default.
- W3210468913 cites W2513644758 @default.
- W3210468913 cites W2548342201 @default.
- W3210468913 cites W2591514928 @default.
- W3210468913 cites W2594265094 @default.
- W3210468913 cites W2617669016 @default.
- W3210468913 cites W2727917467 @default.
- W3210468913 cites W2754128144 @default.
- W3210468913 cites W2755534273 @default.
- W3210468913 cites W2771168287 @default.
- W3210468913 cites W2788788908 @default.
- W3210468913 cites W2808818461 @default.
- W3210468913 cites W2893896121 @default.
- W3210468913 cites W2894849432 @default.
- W3210468913 cites W2898971510 @default.
- W3210468913 cites W2919780733 @default.
- W3210468913 cites W2920311109 @default.
- W3210468913 cites W2942848957 @default.
- W3210468913 cites W2958836289 @default.
- W3210468913 cites W2974146427 @default.
- W3210468913 cites W2976234938 @default.
- W3210468913 cites W3005536866 @default.
- W3210468913 cites W3013589844 @default.
- W3210468913 cites W3013648589 @default.
- W3210468913 cites W3025750122 @default.
- W3210468913 cites W3084460905 @default.
- W3210468913 cites W3088710759 @default.
- W3210468913 cites W3092272414 @default.
- W3210468913 cites W3092890642 @default.
- W3210468913 cites W3095260603 @default.
- W3210468913 cites W3103759921 @default.
- W3210468913 cites W3108211628 @default.
- W3210468913 cites W3128258769 @default.
- W3210468913 cites W3128474585 @default.
- W3210468913 cites W3137720009 @default.
- W3210468913 cites W3137796100 @default.
- W3210468913 cites W3138634112 @default.
- W3210468913 cites W3142772534 @default.
- W3210468913 cites W3152117611 @default.
- W3210468913 cites W3152967916 @default.
- W3210468913 cites W3155523295 @default.
- W3210468913 cites W3158741845 @default.
- W3210468913 cites W3160457167 @default.
- W3210468913 cites W3162335705 @default.
- W3210468913 cites W3177061275 @default.
- W3210468913 cites W3179177104 @default.
- W3210468913 cites W568782330 @default.
- W3210468913 cites W928357660 @default.
- W3210468913 cites W3143622946 @default.
- W3210468913 doi "https://doi.org/10.3390/app11209755" @default.
- W3210468913 hasPublicationYear "2021" @default.
- W3210468913 type Work @default.
- W3210468913 sameAs 3210468913 @default.
- W3210468913 citedByCount "1" @default.
- W3210468913 countsByYear W32104689132023 @default.
- W3210468913 crossrefType "journal-article" @default.
- W3210468913 hasAuthorship W3210468913A5000664500 @default.
- W3210468913 hasAuthorship W3210468913A5009565485 @default.
- W3210468913 hasAuthorship W3210468913A5057190375 @default.
- W3210468913 hasAuthorship W3210468913A5060983001 @default.
- W3210468913 hasAuthorship W3210468913A5061331494 @default.
- W3210468913 hasBestOaLocation W32104689131 @default.
- W3210468913 hasConcept C104317684 @default.
- W3210468913 hasConcept C107459253 @default.
- W3210468913 hasConcept C10854531 @default.
- W3210468913 hasConcept C108583219 @default.
- W3210468913 hasConcept C119857082 @default.
- W3210468913 hasConcept C145103041 @default.
- W3210468913 hasConcept C1491633281 @default.
- W3210468913 hasConcept C154945302 @default.
- W3210468913 hasConcept C41008148 @default.