Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210484048> ?p ?o ?g. }
- W3210484048 endingPage "e0259121" @default.
- W3210484048 startingPage "e0259121" @default.
- W3210484048 abstract "Individual patient data (IPD) present particular advantages in network meta-analysis (NMA) because interactions may lead an aggregated data (AD)-based model to wrong a treatment effect (TE) estimation. However, fewer works have been conducted for IPD with time-to-event contrary to binary outcomes. We aimed to develop a general frequentist one-step model for evaluating TE in the presence of interaction in a three-node NMA for time-to-event data.One-step, frequentist, IPD-based Cox and Poisson generalized linear mixed models were proposed. We simulated a three-node network with or without a closed loop with (1) no interaction, (2) covariate-treatment interaction, and (3) covariate distribution heterogeneity and covariate-treatment interaction. These models were applied to the NMA (Meta-analyses of Chemotherapy in Head and Neck Cancer [MACH-NC] and Radiotherapy in Carcinomas of Head and Neck [MARCH]), which compared the addition of chemotherapy or modified radiotherapy (mRT) to loco-regional treatment with two direct comparisons. AD-based (contrast and meta-regression) models were used as reference.In the simulated study, no IPD models failed to converge. IPD-based models performed well in all scenarios and configurations with small bias. There were few variations across different scenarios. In contrast, AD-based models performed well when there were no interactions, but demonstrated some bias when interaction existed and a larger one when the modifier was not distributed evenly. While meta-regression performed better than contrast-based only, it demonstrated a large variability in estimated TE. In the real data example, Cox and Poisson IPD-based models gave similar estimations of the model parameters. Interaction decomposition permitted by IPD explained the ecological bias observed in the meta-regression.The proposed general one-step frequentist Cox and Poisson models had small bias in the evaluation of a three-node network with interactions. They performed as well or better than AD-based models and should also be undertaken whenever possible." @default.
- W3210484048 created "2021-11-08" @default.
- W3210484048 creator A5002406245 @default.
- W3210484048 creator A5011183093 @default.
- W3210484048 creator A5012092551 @default.
- W3210484048 creator A5023803105 @default.
- W3210484048 creator A5046222312 @default.
- W3210484048 creator A5079657559 @default.
- W3210484048 date "2021-11-01" @default.
- W3210484048 modified "2023-10-15" @default.
- W3210484048 title "A frequentist one-step model for a simple network meta-analysis of time-to-event data in presence of an effect modifier" @default.
- W3210484048 cites W1495967812 @default.
- W3210484048 cites W1840418402 @default.
- W3210484048 cites W1918813775 @default.
- W3210484048 cites W1951724000 @default.
- W3210484048 cites W2004474087 @default.
- W3210484048 cites W2012668456 @default.
- W3210484048 cites W2047480704 @default.
- W3210484048 cites W2049192772 @default.
- W3210484048 cites W2083674804 @default.
- W3210484048 cites W2089257078 @default.
- W3210484048 cites W2095967516 @default.
- W3210484048 cites W2103823788 @default.
- W3210484048 cites W2105669432 @default.
- W3210484048 cites W2120726242 @default.
- W3210484048 cites W2133531206 @default.
- W3210484048 cites W2134143967 @default.
- W3210484048 cites W2136916987 @default.
- W3210484048 cites W2139168999 @default.
- W3210484048 cites W2144625636 @default.
- W3210484048 cites W2149611072 @default.
- W3210484048 cites W2155772830 @default.
- W3210484048 cites W2169205464 @default.
- W3210484048 cites W2171524637 @default.
- W3210484048 cites W2237437504 @default.
- W3210484048 cites W2323540307 @default.
- W3210484048 cites W2497458539 @default.
- W3210484048 cites W2560126104 @default.
- W3210484048 cites W2736915386 @default.
- W3210484048 cites W2740402187 @default.
- W3210484048 cites W2744173239 @default.
- W3210484048 cites W2783147278 @default.
- W3210484048 cites W2787260292 @default.
- W3210484048 cites W2811477782 @default.
- W3210484048 cites W2897247590 @default.
- W3210484048 cites W2917955390 @default.
- W3210484048 doi "https://doi.org/10.1371/journal.pone.0259121" @default.
- W3210484048 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8559936" @default.
- W3210484048 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34723994" @default.
- W3210484048 hasPublicationYear "2021" @default.
- W3210484048 type Work @default.
- W3210484048 sameAs 3210484048 @default.
- W3210484048 citedByCount "3" @default.
- W3210484048 countsByYear W32104840482022 @default.
- W3210484048 countsByYear W32104840482023 @default.
- W3210484048 crossrefType "journal-article" @default.
- W3210484048 hasAuthorship W3210484048A5002406245 @default.
- W3210484048 hasAuthorship W3210484048A5011183093 @default.
- W3210484048 hasAuthorship W3210484048A5012092551 @default.
- W3210484048 hasAuthorship W3210484048A5023803105 @default.
- W3210484048 hasAuthorship W3210484048A5046222312 @default.
- W3210484048 hasAuthorship W3210484048A5079657559 @default.
- W3210484048 hasBestOaLocation W32104840481 @default.
- W3210484048 hasConcept C100906024 @default.
- W3210484048 hasConcept C105795698 @default.
- W3210484048 hasConcept C107673813 @default.
- W3210484048 hasConcept C119043178 @default.
- W3210484048 hasConcept C126322002 @default.
- W3210484048 hasConcept C149782125 @default.
- W3210484048 hasConcept C154945302 @default.
- W3210484048 hasConcept C160234255 @default.
- W3210484048 hasConcept C162376815 @default.
- W3210484048 hasConcept C2776502983 @default.
- W3210484048 hasConcept C33923547 @default.
- W3210484048 hasConcept C41008148 @default.
- W3210484048 hasConcept C50382708 @default.
- W3210484048 hasConcept C71924100 @default.
- W3210484048 hasConcept C95190672 @default.
- W3210484048 hasConceptScore W3210484048C100906024 @default.
- W3210484048 hasConceptScore W3210484048C105795698 @default.
- W3210484048 hasConceptScore W3210484048C107673813 @default.
- W3210484048 hasConceptScore W3210484048C119043178 @default.
- W3210484048 hasConceptScore W3210484048C126322002 @default.
- W3210484048 hasConceptScore W3210484048C149782125 @default.
- W3210484048 hasConceptScore W3210484048C154945302 @default.
- W3210484048 hasConceptScore W3210484048C160234255 @default.
- W3210484048 hasConceptScore W3210484048C162376815 @default.
- W3210484048 hasConceptScore W3210484048C2776502983 @default.
- W3210484048 hasConceptScore W3210484048C33923547 @default.
- W3210484048 hasConceptScore W3210484048C41008148 @default.
- W3210484048 hasConceptScore W3210484048C50382708 @default.
- W3210484048 hasConceptScore W3210484048C71924100 @default.
- W3210484048 hasConceptScore W3210484048C95190672 @default.
- W3210484048 hasIssue "11" @default.
- W3210484048 hasLocation W32104840481 @default.
- W3210484048 hasLocation W32104840482 @default.
- W3210484048 hasLocation W32104840483 @default.
- W3210484048 hasLocation W32104840484 @default.