Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210608463> ?p ?o ?g. }
- W3210608463 endingPage "265" @default.
- W3210608463 startingPage "253" @default.
- W3210608463 abstract "Sensor-based material flow characterization (SBMC) promises to improve the performance of future-generation sorting plants by enabling new applications like automatic quality monitoring or process control. Prerequisite for this is the derivation of mass-based material flow characteristics from pixel-based sensor data, which requires known individual particle masses. Since particle masses cannot be measured inline, the prediction of particle masses of lightweight packaging (LWP) waste using machine learning (ML) algorithms is investigated. Five LWP material classes were sampled, preprocessed, and scanned on a custom-made test rig, resulting in a dataset containing 3D laser triangulation (3DLT) images, RGB images, and corresponding masses of n = 3,830 particles. Based on 66 extracted shape measurements, six ML models were trained for particle mass prediction (PMP). Their performance was compared with two state-of-the-art reference models using (i) material-specific mean particle masses and (ii) grammages. Obtained particle masses showed a high variation and significant differences between material classes and particle size classes. After feature selection, both reference models achieving R2-scores of (i) 0.422 ± 0.121 and (ii) 0.533 ± 0.224 were outperformed by all investigated ML models. A random forest regressor with an R2-score of 0.763 ± 0.091 and a normalized mean absolute error of 0.243 ± 0.050 achieved the most accurate PMP. In contrast to studies on primary raw materials, PMP of LWP waste is challenging due to influences of packaging design and post-consumer disposal behavior. ML algorithms are a promising approach for PMP that outperform state-of-the-art methods by 43% higher R2-scores." @default.
- W3210608463 created "2021-11-08" @default.
- W3210608463 creator A5028264207 @default.
- W3210608463 creator A5030263640 @default.
- W3210608463 creator A5031185563 @default.
- W3210608463 creator A5031434055 @default.
- W3210608463 creator A5054117989 @default.
- W3210608463 creator A5082553528 @default.
- W3210608463 date "2021-12-01" @default.
- W3210608463 modified "2023-10-18" @default.
- W3210608463 title "Sensor-based particle mass prediction of lightweight packaging waste using machine learning algorithms" @default.
- W3210608463 cites W1975923726 @default.
- W3210608463 cites W1975958432 @default.
- W3210608463 cites W1998568814 @default.
- W3210608463 cites W2015159529 @default.
- W3210608463 cites W2036887984 @default.
- W3210608463 cites W2039240409 @default.
- W3210608463 cites W2042384216 @default.
- W3210608463 cites W2057110558 @default.
- W3210608463 cites W2089900557 @default.
- W3210608463 cites W2092095117 @default.
- W3210608463 cites W2095087410 @default.
- W3210608463 cites W2100483895 @default.
- W3210608463 cites W2104468126 @default.
- W3210608463 cites W2153635508 @default.
- W3210608463 cites W2191571159 @default.
- W3210608463 cites W2256424214 @default.
- W3210608463 cites W2580402836 @default.
- W3210608463 cites W2739166259 @default.
- W3210608463 cites W2749550903 @default.
- W3210608463 cites W2911964244 @default.
- W3210608463 cites W2913942494 @default.
- W3210608463 cites W2954430690 @default.
- W3210608463 cites W2955589731 @default.
- W3210608463 cites W2969671511 @default.
- W3210608463 cites W3006544392 @default.
- W3210608463 cites W3017238131 @default.
- W3210608463 cites W3020309566 @default.
- W3210608463 cites W3049479846 @default.
- W3210608463 cites W3092218052 @default.
- W3210608463 cites W3092903804 @default.
- W3210608463 cites W3096088866 @default.
- W3210608463 cites W3099878876 @default.
- W3210608463 cites W3103172663 @default.
- W3210608463 cites W3129030483 @default.
- W3210608463 cites W3150152121 @default.
- W3210608463 cites W4246572249 @default.
- W3210608463 doi "https://doi.org/10.1016/j.wasman.2021.10.017" @default.
- W3210608463 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34710801" @default.
- W3210608463 hasPublicationYear "2021" @default.
- W3210608463 type Work @default.
- W3210608463 sameAs 3210608463 @default.
- W3210608463 citedByCount "11" @default.
- W3210608463 countsByYear W32106084632021 @default.
- W3210608463 countsByYear W32106084632022 @default.
- W3210608463 countsByYear W32106084632023 @default.
- W3210608463 crossrefType "journal-article" @default.
- W3210608463 hasAuthorship W3210608463A5028264207 @default.
- W3210608463 hasAuthorship W3210608463A5030263640 @default.
- W3210608463 hasAuthorship W3210608463A5031185563 @default.
- W3210608463 hasAuthorship W3210608463A5031434055 @default.
- W3210608463 hasAuthorship W3210608463A5054117989 @default.
- W3210608463 hasAuthorship W3210608463A5082553528 @default.
- W3210608463 hasConcept C111368507 @default.
- W3210608463 hasConcept C111696304 @default.
- W3210608463 hasConcept C111919701 @default.
- W3210608463 hasConcept C11413529 @default.
- W3210608463 hasConcept C119857082 @default.
- W3210608463 hasConcept C127313418 @default.
- W3210608463 hasConcept C127413603 @default.
- W3210608463 hasConcept C154945302 @default.
- W3210608463 hasConcept C21880701 @default.
- W3210608463 hasConcept C2778517922 @default.
- W3210608463 hasConcept C33923547 @default.
- W3210608463 hasConcept C39432304 @default.
- W3210608463 hasConcept C41008148 @default.
- W3210608463 hasConcept C98045186 @default.
- W3210608463 hasConceptScore W3210608463C111368507 @default.
- W3210608463 hasConceptScore W3210608463C111696304 @default.
- W3210608463 hasConceptScore W3210608463C111919701 @default.
- W3210608463 hasConceptScore W3210608463C11413529 @default.
- W3210608463 hasConceptScore W3210608463C119857082 @default.
- W3210608463 hasConceptScore W3210608463C127313418 @default.
- W3210608463 hasConceptScore W3210608463C127413603 @default.
- W3210608463 hasConceptScore W3210608463C154945302 @default.
- W3210608463 hasConceptScore W3210608463C21880701 @default.
- W3210608463 hasConceptScore W3210608463C2778517922 @default.
- W3210608463 hasConceptScore W3210608463C33923547 @default.
- W3210608463 hasConceptScore W3210608463C39432304 @default.
- W3210608463 hasConceptScore W3210608463C41008148 @default.
- W3210608463 hasConceptScore W3210608463C98045186 @default.
- W3210608463 hasLocation W32106084631 @default.
- W3210608463 hasLocation W32106084632 @default.
- W3210608463 hasOpenAccess W3210608463 @default.
- W3210608463 hasPrimaryLocation W32106084631 @default.
- W3210608463 hasRelatedWork W2899084033 @default.
- W3210608463 hasRelatedWork W2961085424 @default.
- W3210608463 hasRelatedWork W3046775127 @default.