Matches in SemOpenAlex for { <https://semopenalex.org/work/W3210672765> ?p ?o ?g. }
- W3210672765 endingPage "1514" @default.
- W3210672765 startingPage "1514" @default.
- W3210672765 abstract "The present study evaluates and compares predictions on the performance and the approaches of the response surface methodology (RSM) and the artificial neural network (ANN) so to model the bending strength of the polyurethane foam-cored sandwich panel. The effect of the independent variables (formaldehyde to urea molar ratio (MR), sandwich panel thickness (PT) and the oxidized protein to melamine-urea-formaldehyde synthesized resin weight ratio (WR)) was examined based on the bending strength by the central composite design of the RSM and the multilayer perceptron of the ANN. The models were statistically compared based on the training and validation data sets via the determination coefficient (R2), the root mean squares error (RMSE), the absolute average deviation (AAD) and the mean absolute percentage error (MAPE). The R2 calculated for the ANN and the RSM models was 0.9969 and 0.9960, respectively. The models offered good predictions; however, the ANN model was more precise than the RSM model, thus proving that the ANN and the RSM models are valuable instruments to model and optimize the bending properties of the sandwich panel." @default.
- W3210672765 created "2021-11-08" @default.
- W3210672765 creator A5012382537 @default.
- W3210672765 creator A5034150030 @default.
- W3210672765 creator A5055031799 @default.
- W3210672765 creator A5061094806 @default.
- W3210672765 creator A5077593206 @default.
- W3210672765 date "2021-11-02" @default.
- W3210672765 modified "2023-09-23" @default.
- W3210672765 title "Modeling the Bending Strength of MDF Faced, Polyurethane Foam-Cored Sandwich Panels Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN)" @default.
- W3210672765 cites W1963829755 @default.
- W3210672765 cites W1965667065 @default.
- W3210672765 cites W1977591239 @default.
- W3210672765 cites W1983527211 @default.
- W3210672765 cites W1992781516 @default.
- W3210672765 cites W2007668855 @default.
- W3210672765 cites W2009938117 @default.
- W3210672765 cites W2018218250 @default.
- W3210672765 cites W2019013721 @default.
- W3210672765 cites W2031246318 @default.
- W3210672765 cites W2033516432 @default.
- W3210672765 cites W2049014569 @default.
- W3210672765 cites W2052773527 @default.
- W3210672765 cites W2056028775 @default.
- W3210672765 cites W2060809834 @default.
- W3210672765 cites W2064247035 @default.
- W3210672765 cites W2066528420 @default.
- W3210672765 cites W2070832478 @default.
- W3210672765 cites W2085821884 @default.
- W3210672765 cites W2122827312 @default.
- W3210672765 cites W2135795301 @default.
- W3210672765 cites W2144798802 @default.
- W3210672765 cites W2164758323 @default.
- W3210672765 cites W2180475207 @default.
- W3210672765 cites W2291748823 @default.
- W3210672765 cites W2408349837 @default.
- W3210672765 cites W2463635381 @default.
- W3210672765 cites W2467973122 @default.
- W3210672765 cites W2522193515 @default.
- W3210672765 cites W2535662144 @default.
- W3210672765 cites W2586383245 @default.
- W3210672765 cites W2731024221 @default.
- W3210672765 cites W2747843223 @default.
- W3210672765 cites W2789267270 @default.
- W3210672765 cites W2801845307 @default.
- W3210672765 cites W2883762197 @default.
- W3210672765 cites W2914202896 @default.
- W3210672765 cites W2921730658 @default.
- W3210672765 cites W2947325112 @default.
- W3210672765 cites W2963334887 @default.
- W3210672765 cites W2983944565 @default.
- W3210672765 cites W2990883936 @default.
- W3210672765 cites W3021357725 @default.
- W3210672765 cites W3040086462 @default.
- W3210672765 cites W3047913169 @default.
- W3210672765 cites W3049363167 @default.
- W3210672765 cites W3099033345 @default.
- W3210672765 cites W3110466208 @default.
- W3210672765 cites W3155851929 @default.
- W3210672765 doi "https://doi.org/10.3390/f12111514" @default.
- W3210672765 hasPublicationYear "2021" @default.
- W3210672765 type Work @default.
- W3210672765 sameAs 3210672765 @default.
- W3210672765 citedByCount "4" @default.
- W3210672765 countsByYear W32106727652022 @default.
- W3210672765 countsByYear W32106727652023 @default.
- W3210672765 crossrefType "journal-article" @default.
- W3210672765 hasAuthorship W3210672765A5012382537 @default.
- W3210672765 hasAuthorship W3210672765A5034150030 @default.
- W3210672765 hasAuthorship W3210672765A5055031799 @default.
- W3210672765 hasAuthorship W3210672765A5061094806 @default.
- W3210672765 hasAuthorship W3210672765A5077593206 @default.
- W3210672765 hasBestOaLocation W32106727651 @default.
- W3210672765 hasConcept C104779481 @default.
- W3210672765 hasConcept C105795698 @default.
- W3210672765 hasConcept C119857082 @default.
- W3210672765 hasConcept C127413603 @default.
- W3210672765 hasConcept C128990827 @default.
- W3210672765 hasConcept C139945424 @default.
- W3210672765 hasConcept C150077022 @default.
- W3210672765 hasConcept C150217764 @default.
- W3210672765 hasConcept C159985019 @default.
- W3210672765 hasConcept C179717631 @default.
- W3210672765 hasConcept C192562407 @default.
- W3210672765 hasConcept C2779578285 @default.
- W3210672765 hasConcept C33923547 @default.
- W3210672765 hasConcept C41008148 @default.
- W3210672765 hasConcept C50644808 @default.
- W3210672765 hasConcept C66938386 @default.
- W3210672765 hasConcept C87210426 @default.
- W3210672765 hasConcept C92397422 @default.
- W3210672765 hasConceptScore W3210672765C104779481 @default.
- W3210672765 hasConceptScore W3210672765C105795698 @default.
- W3210672765 hasConceptScore W3210672765C119857082 @default.
- W3210672765 hasConceptScore W3210672765C127413603 @default.
- W3210672765 hasConceptScore W3210672765C128990827 @default.
- W3210672765 hasConceptScore W3210672765C139945424 @default.
- W3210672765 hasConceptScore W3210672765C150077022 @default.